Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (227)
  • Open Access

    ARTICLE

    A Lightweight Intrusion Detection System Using Convolutional Neural Network and Long Short-Term Memory in Fog Computing

    Hawazen Alzahrani1, Tarek Sheltami1, Abdulaziz Barnawi2, Muhammad Imam2,*, Ansar Yaser3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4703-4728, 2024, DOI:10.32604/cmc.2024.054203

    Abstract The Internet of Things (IoT) links various devices to digital services and significantly improves the quality of our lives. However, as IoT connectivity is growing rapidly, so do the risks of network vulnerabilities and threats. Many interesting Intrusion Detection Systems (IDSs) are presented based on machine learning (ML) techniques to overcome this problem. Given the resource limitations of fog computing environments, a lightweight IDS is essential. This paper introduces a hybrid deep learning (DL) method that combines convolutional neural networks (CNN) and long short-term memory (LSTM) to build an energy-aware, anomaly-based IDS. We test this… More >

  • Open Access

    ARTICLE

    A Complex Fuzzy LSTM Network for Temporal-Related Forecasting Problems

    Nguyen Tho Thong1, Nguyen Van Quyet1,2, Cu Nguyen Giap3,*, Nguyen Long Giang1, Luong Thi Hong Lan4

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4173-4196, 2024, DOI:10.32604/cmc.2024.054031

    Abstract Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick development of management platforms and systems based on the Internet and cutting-edge information communication technologies. Mining the time series data including time series prediction has many practical applications. Many new techniques were developed for use with various types of time series data in the prediction problem. Among those, this work suggests a unique strategy to enhance predicting quality on time-series datasets that the time-cycle matters by fusing deep learning methods with fuzzy theory. In order to increase forecasting accuracy… More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Based on DBSCAN-SVM Data Cleaning and PSO-LSTM Model

    Yujin Liu1, Zhenkai Zhang1, Li Ma1, Yan Jia1,2,*, Weihua Yin3, Zhifeng Liu3

    Energy Engineering, Vol.121, No.10, pp. 3019-3035, 2024, DOI:10.32604/ee.2024.052594

    Abstract Accurate short-term photovoltaic (PV) power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans. In order to improve the accuracy of PV power prediction further, this paper proposes a data cleaning method combining density clustering and support vector machine. It constructs a short-term PV power prediction model based on particle swarm optimization (PSO) optimized Long Short-Term Memory (LSTM) network. Firstly, the input features are determined using Pearson’s correlation coefficient. The feature information is clustered using density-based spatial clustering of applications with noise More >

  • Open Access

    ARTICLE

    Mathematical Named Entity Recognition Based on Adversarial Training and Self-Attention

    Qiuyu Lai1,2, Wang Kang3, Lei Yang1,2, Chun Yang1,2,*, Delin Zhang2,*

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 649-664, 2024, DOI:10.32604/iasc.2024.051724

    Abstract Mathematical named entity recognition (MNER) is one of the fundamental tasks in the analysis of mathematical texts. To solve the existing problems of the current neural network that has local instability, fuzzy entity boundary, and long-distance dependence between entities in Chinese mathematical entity recognition task, we propose a series of optimization processing methods and constructed an Adversarial Training and Bidirectional long short-term memory-Selfattention Conditional random field (AT-BSAC) model. In our model, the mathematical text was vectorized by the word embedding technique, and small perturbations were added to the word vector to generate adversarial samples, while More >

  • Open Access

    ARTICLE

    DPAL-BERT: A Faster and Lighter Question Answering Model

    Lirong Yin1, Lei Wang1, Zhuohang Cai2, Siyu Lu2,*, Ruiyang Wang2, Ahmed AlSanad3, Salman A. AlQahtani3, Xiaobing Chen4, Zhengtong Yin5, Xiaolu Li6, Wenfeng Zheng2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 771-786, 2024, DOI:10.32604/cmes.2024.052622

    Abstract Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems. However, with the constant evolution of algorithms, data, and computing power, the increasing size and complexity of these models have led to increased training costs and reduced efficiency. This study aims to minimize the inference time of such models while maintaining computational performance. It also proposes a novel Distillation model for PAL-BERT (DPAL-BERT), specifically, employs knowledge distillation, using the PAL-BERT model as the teacher model to train two student models: DPAL-BERT-Bi and DPAL-BERT-C. This research enhances the dataset More >

  • Open Access

    ARTICLE

    Chinese Clinical Named Entity Recognition Using Multi-Feature Fusion and Multi-Scale Local Context Enhancement

    Meijing Li*, Runqing Huang, Xianxian Qi

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2283-2299, 2024, DOI:10.32604/cmc.2024.053630

    Abstract Chinese Clinical Named Entity Recognition (CNER) is a crucial step in extracting medical information and is of great significance in promoting medical informatization. However, CNER poses challenges due to the specificity of clinical terminology, the complexity of Chinese text semantics, and the uncertainty of Chinese entity boundaries. To address these issues, we propose an improved CNER model, which is based on multi-feature fusion and multi-scale local context enhancement. The model simultaneously fuses multi-feature representations of pinyin, radical, Part of Speech (POS), word boundary with BERT deep contextual representations to enhance the semantic representation of text… More >

  • Open Access

    ARTICLE

    LSTM Based Neural Network Model for Anomaly Event Detection in Care-Independent Smart Homes

    Brij B. Gupta1,2,3,*, Akshat Gaurav4, Razaz Waheeb Attar5, Varsha Arya6,7, Ahmed Alhomoud8, Kwok Tai Chui9

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2689-2706, 2024, DOI:10.32604/cmes.2024.050825

    Abstract This study introduces a long-short-term memory (LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes, focusing on the critical application of elderly fall detection. It balances the dataset using the Synthetic Minority Over-sampling Technique (SMOTE), effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks. The proposed LSTM model is trained on the enriched dataset, capturing the temporal dependencies essential for anomaly recognition. The model demonstrated a significant improvement in anomaly detection, with an accuracy of 84%. The results, detailed in the comprehensive classification and confusion More >

  • Open Access

    ARTICLE

    DeBERTa-GRU: Sentiment Analysis for Large Language Model

    Adel Assiri1, Abdu Gumaei2,*, Faisal Mehmood3,*, Touqeer Abbas4, Sami Ullah5

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4219-4236, 2024, DOI:10.32604/cmc.2024.050781

    Abstract Modern technological advancements have made social media an essential component of daily life. Social media allow individuals to share thoughts, emotions, and ideas. Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive, negative, neutral, or any other personal emotion to understand the sentiment context of the text. Sentiment analysis is essential in business and society because it impacts strategic decision-making. Sentiment analysis involves challenges due to lexical variation, an unlabeled dataset, and text distance correlations. The execution time increases due to the sequential processing of the sequence models. However,… More >

  • Open Access

    ARTICLE

    A New Industrial Intrusion Detection Method Based on CNN-BiLSTM

    Jun Wang, Changfu Si, Zhen Wang, Qiang Fu*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4297-4318, 2024, DOI:10.32604/cmc.2024.050223

    Abstract Nowadays, with the rapid development of industrial Internet technology, on the one hand, advanced industrial control systems (ICS) have improved industrial production efficiency. However, there are more and more cyber-attacks targeting industrial control systems. To ensure the security of industrial networks, intrusion detection systems have been widely used in industrial control systems, and deep neural networks have always been an effective method for identifying cyber attacks. Current intrusion detection methods still suffer from low accuracy and a high false alarm rate. Therefore, it is important to build a more efficient intrusion detection model. This paper… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method of Rolling Bearing Based on MSCNN-LSTM

    Chunming Wu1, Shupeng Zheng2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4395-4411, 2024, DOI:10.32604/cmc.2024.049665

    Abstract Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently. To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios, a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network (MSCNN) and Long Short-Term Memory (LSTM) fused with attention mechanism is proposed. To adaptively extract the essential spatial feature information of various sizes, the model creates a multi-scale feature extraction module using the convolutional neural network (CNN) learning process.… More >

Displaying 1-10 on page 1 of 227. Per Page