Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (185)
  • Open Access

    ARTICLE

    Anomaly Detection for Cloud Systems with Dynamic Spatiotemporal Learning

    Mingguang Yu1,2, Xia Zhang1,2,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1787-1806, 2023, DOI:10.32604/iasc.2023.038798

    Abstract As cloud system architectures evolve continuously, the interactions among distributed components in various roles become increasingly complex. This complexity makes it difficult to detect anomalies in cloud systems. The system status can no longer be determined through individual key performance indicators (KPIs) but through joint judgments based on synergistic relationships among distributed components. Furthermore, anomalies in modern cloud systems are usually not sudden crashes but rather gradual, chronic, localized failures or quality degradations in a weakly available state. Therefore, accurately modeling cloud systems and mining the hidden system state is crucial. To address this challenge, we propose an anomaly detection… More >

  • Open Access

    ARTICLE

    Prediction-Based Thunderstorm Path Recovery Method Using CNN-BiLSTM

    Xu Yang1,2, Ling Zhuang1, Yuqiang Sun3, Wenjie Zhang4,5,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1637-1654, 2023, DOI:10.32604/iasc.2023.039879

    Abstract The loss of three-dimensional atmospheric electric field (3DAEF) data has a negative impact on thunderstorm detection. This paper proposes a method for thunderstorm point charge path recovery. Based on the relationship between a point charge and 3DAEF, we derive corresponding localization formulae by establishing a point charge localization model. Generally, point charge movement paths are obtained after fitting time series localization results. However, AEF data losses make it difficult to fit and visualize paths. Therefore, using available AEF data without loss as input, we design a hybrid model combining the convolutional neural network (CNN) and bi-directional long short-term memory (BiLSTM)… More >

  • Open Access

    ARTICLE

    Urban Drainage Network Scheduling Strategy Based on Dynamic Regulation: Optimization Model and Theoretical Research

    Xiaoming Fei*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1293-1309, 2023, DOI:10.32604/iasc.2023.038607

    Abstract With the acceleration of urbanization in China, the discharge of domestic sewage and industrial wastewater is increasing, and accidents of sewage spilling out and polluting the environment occur from time to time. Problems such as imperfect facilities and backward control methods are common in the urban drainage network systems in China. Efficient drainage not only strengthens infrastructure such as rain and sewage diversion, pollution source monitoring, transportation, drainage and storage but also urgently needs technical means to monitor and optimize production and operation. Aiming at the optimal control of single-stage pumping stations and the coordinated control between two-stage pumping stations,… More >

  • Open Access

    ARTICLE

    A PERT-BiLSTM-Att Model for Online Public Opinion Text Sentiment Analysis

    Mingyong Li, Zheng Jiang*, Zongwei Zhao, Longfei Ma

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2387-2406, 2023, DOI:10.32604/iasc.2023.037900

    Abstract As an essential category of public event management and control, sentiment analysis of online public opinion text plays a vital role in public opinion early warning, network rumor management, and netizens’ personality portraits under massive public opinion data. The traditional sentiment analysis model is not sensitive to the location information of words, it is difficult to solve the problem of polysemy, and the learning representation ability of long and short sentences is very different, which leads to the low accuracy of sentiment classification. This paper proposes a sentiment analysis model PERT-BiLSTM-Att for public opinion text based on the pre-training model… More >

  • Open Access

    ARTICLE

    Intrusion Detection in the Internet of Things Using Fusion of GRU-LSTM Deep Learning Model

    Mohammad S. Al-kahtani1, Zahid Mehmood2,3,*, Tariq Sadad4, Islam Zada5, Gauhar Ali6, Mohammed ElAffendi6

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2279-2290, 2023, DOI:10.32604/iasc.2023.037673

    Abstract Cybersecurity threats are increasing rapidly as hackers use advanced techniques. As a result, cybersecurity has now a significant factor in protecting organizational limits. Intrusion detection systems (IDSs) are used in networks to flag serious issues during network management, including identifying malicious traffic, which is a challenge. It remains an open contest over how to learn features in IDS since current approaches use deep learning methods. Hybrid learning, which combines swarm intelligence and evolution, is gaining attention for further improvement against cyber threats. In this study, we employed a PSO-GA (fusion of particle swarm optimization (PSO) and genetic algorithm (GA)) for… More >

  • Open Access

    ARTICLE

    Flow Direction Level Traffic Flow Prediction Based on a GCN-LSTM Combined Model

    Fulu Wei1, Xin Li1, Yongqing Guo1,*, Zhenyu Wang2, Qingyin Li1, Xueshi Ma3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2001-2018, 2023, DOI:10.32604/iasc.2023.035799

    Abstract Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning. Due to the complexity of road traffic flow data, traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy. In this study, a combined flow direction level traffic flow prediction graph convolutional network (GCN) and long short-term memory (LSTM) model based on spatiotemporal characteristics is proposed. First, a GCN model is employed to capture the topological structure of the data graph and extract… More >

  • Open Access

    ARTICLE

    Kalman Filter-Based CNN-BiLSTM-ATT Model for Traffic Flow Prediction

    Hong Zhang1,2,*, Gang Yang1, Hailiang Yu1, Zan Zheng1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1047-1063, 2023, DOI:10.32604/cmc.2023.039274

    Abstract To accurately predict traffic flow on the highways, this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism (CNN-BiLSTM-Attention) traffic flow prediction model based on Kalman-filtered data processing. Firstly, the original fluctuating data is processed by Kalman filtering, which can reduce the instability of short-term traffic flow prediction due to unexpected accidents. Then the local spatial features of the traffic data during different periods are extracted, dimensionality is reduced through a one-dimensional CNN, and the BiLSTM network is used to analyze the time series information. Finally, the Attention Mechanism assigns feature weights and performs Softmax regression. The experimental results… More >

  • Open Access

    ARTICLE

    CBOE Volatility Index Forecasting under COVID-19: An Integrated BiLSTM-ARIMA-GARCH Model

    Min Hyung Park1, Dongyan Nan2,3, Yerin Kim1, Jang Hyun Kim1,2,3,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 121-134, 2023, DOI:10.32604/csse.2023.033247

    Abstract After the outbreak of COVID-19, the global economy entered a deep freeze. This observation is supported by the Volatility Index (VIX), which reflects the market risk expected by investors. In the current study, we predicted the VIX using variables obtained from the sentiment analysis of data on Twitter posts related to the keyword “COVID-19,” using a model integrating the bidirectional long-term memory (BiLSTM), autoregressive integrated moving average (ARIMA) algorithm, and generalized autoregressive conditional heteroskedasticity (GARCH) model. The Linguistic Inquiry and Word Count (LIWC) program and Valence Aware Dictionary for Sentiment Reasoning (VADER) model were utilized as sentiment analysis methods. The… More >

  • Open Access

    ARTICLE

    Long-Term Energy Forecasting System Based on LSTM and Deep Extreme Machine Learning

    Cherifa Nakkach*, Amira Zrelli, Tahar Ezzedine

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 545-560, 2023, DOI:10.32604/iasc.2023.036385

    Abstract Due to the development of diversified and flexible building energy resources, the balancing energy supply and demand especially in smart buildings caused an increasing problem. Energy forecasting is necessary to address building energy issues and comfort challenges that drive urbanization and consequent increases in energy consumption. Recently, their management has a great significance as resources become scarcer and their emissions increase. In this article, we propose an intelligent energy forecasting method based on hybrid deep learning, in which the data collected by the smart home through meters is put into the pre-evaluation step. Next, the refined data is the input… More >

  • Open Access

    ARTICLE

    CNN-LSTM: A Novel Hybrid Deep Neural Network Model for Brain Tumor Classification

    R. D. Dhaniya1, K. M. Umamaheswari2,*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1129-1143, 2023, DOI:10.32604/iasc.2023.035905

    Abstract Current revelations in medical imaging have seen a slew of computer-aided diagnostic (CAD) tools for radiologists developed. Brain tumor classification is essential for radiologists to fully support and better interpret magnetic resonance imaging (MRI). In this work, we reported on new observations based on binary brain tumor categorization using HYBRID CNN-LSTM. Initially, the collected image is pre-processed and augmented using the following steps such as rotation, cropping, zooming, CLAHE (Contrast Limited Adaptive Histogram Equalization), and Random Rotation with panoramic stitching (RRPS). Then, a method called particle swarm optimization (PSO) is used to segment tumor regions in an MR image. After… More >

Displaying 21-30 on page 3 of 185. Per Page