Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (307)
  • Open Access

    ARTICLE

    Fatigue Life Prediction of Composite Materials Based on BO-CNN-BiLSTM Model and Ultrasonic Guided Waves

    Mengke Ding1, Jun Li1,2,*, Dongyue Gao1,*, Guotai Zhou2, Borui Wang1, Zhanjun Wu1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 597-612, 2025, DOI:10.32604/cmc.2025.067907 - 29 August 2025

    Abstract Throughout the composite structure’s lifespan, it is subject to a range of environmental factors, including loads, vibrations, and conditions involving heat and humidity. These factors have the potential to compromise the integrity of the structure. The estimation of the fatigue life of composite materials is imperative for ensuring the structural integrity of these materials. In this study, a methodology is proposed for predicting the fatigue life of composites that integrates ultrasonic guided waves and machine learning modeling. The method first screens the ultrasonic guided wave signal features that are significantly affected by fatigue damage. Subsequently,… More >

  • Open Access

    ARTICLE

    Anomaly Diagnosis Using Machine Learning Method in Fiber Fault Diagnosis

    Xiaoping Yang1,2,3, Jinku Qiu2,3,4, Xifa Gong5, Jin Ye5, Fei Yao5,*, Jiaqiao Chen6, Xianzan Luo6, Da Qin6

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1515-1539, 2025, DOI:10.32604/cmc.2025.067518 - 29 August 2025

    Abstract In contemporary society, rapid and accurate optical cable fault detection is of paramount importance for ensuring the stability and reliability of optical networks. The emergence of novel faults in optical networks has introduced new challenges, significantly compromising their normal operation. Machine learning has emerged as a highly promising approach. Consequently, it is imperative to develop an automated and reliable algorithm that utilizes telemetry data acquired from Optical Time-Domain Reflectometers (OTDR) to enable real-time fault detection and diagnosis in optical fibers. In this paper, we introduce a multi-scale Convolutional Neural Network–Bidirectional Long Short-Term Memory (CNN-BiLSTM) deep… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method for Photovoltaic Grid-Connected Inverters Based on MPA-VMD-PSO BiLSTM

    Jingxian Ni, Chaomeng Wang, Shiqi Sun, Yuxuan Sun, Gang Ma*

    Energy Engineering, Vol.122, No.9, pp. 3719-3736, 2025, DOI:10.32604/ee.2025.066971 - 26 August 2025

    Abstract To improve the fault diagnosis accuracy of a PV grid-connected inverter, a PV grid-connected inverter data diagnosis method based on MPA-VMD-PSO-BiLSTM is proposed. Firstly, unlike the traditional VMD algorithm which relies on manual experience to set parameters (e.g., noise tolerance, penalty parameter, number of decompositions), this paper achieves adaptive optimization of parameters through MPA algorithm to avoid the problem of feature information loss caused by manual parameter tuning, and adopts the improved VMD algorithm for feature extraction of DC-side voltage data signals of PV-grid-connected inverters; and then, adopts the PSO algorithm for the Then, the… More >

  • Open Access

    ARTICLE

    A Hybrid LSTM-Single Candidate Optimizer Model for Short-Term Wind Power Prediction

    Mehmet Balci1,*, Emrah Dokur2, Ugur Yuzgec3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 945-968, 2025, DOI:10.32604/cmes.2025.067851 - 31 July 2025

    Abstract Accurate prediction of wind energy plays a vital role in maintaining grid stability and supporting the broader shift toward renewable energy systems. Nevertheless, the inherently variable nature of wind and the intricacy of high-dimensional datasets pose major obstacles to reliable forecasting. To address these difficulties, this study presents an innovative hybrid method for short-term wind power prediction by combining a Long Short-Term Memory (LSTM) network with a Single Candidate Optimizer (SCO) algorithm. In contrast to conventional techniques that rely on random parameter initialization, the proposed LSTM-SCO framework leverages the distinctive capability of SCO to work More > Graphic Abstract

    A Hybrid LSTM-Single Candidate Optimizer Model for Short-Term Wind Power Prediction

  • Open Access

    ARTICLE

    ARNet: Integrating Spatial and Temporal Deep Learning for Robust Action Recognition in Videos

    Hussain Dawood1, Marriam Nawaz2, Tahira Nazir3, Ali Javed2, Abdul Khader Jilani Saudagar4,*, Hatoon S. AlSagri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 429-459, 2025, DOI:10.32604/cmes.2025.066415 - 31 July 2025

    Abstract Reliable human action recognition (HAR) in video sequences is critical for a wide range of applications, such as security surveillance, healthcare monitoring, and human-computer interaction. Several automated systems have been designed for this purpose; however, existing methods often struggle to effectively integrate spatial and temporal information from input samples such as 2-stream networks or 3D convolutional neural networks (CNNs), which limits their accuracy in discriminating numerous human actions. Therefore, this study introduces a novel deep-learning framework called the ARNet, designed for robust HAR. ARNet consists of two main modules, namely, a refined InceptionResNet-V2-based CNN and… More >

  • Open Access

    ARTICLE

    A Novel Attention-Augmented LSTM (AA-LSTM) Model for Optimized Energy Management in EV Charging Stations

    Harendra Pratap Singh1,2, Ishfaq Hussain Rather3, Sushil Kumar1, Mohammad Aljaidi4, Omprakash Kaiwartya5,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5577-5595, 2025, DOI:10.32604/cmc.2025.065741 - 30 July 2025

    Abstract Electric Vehicles (EVs) have emerged as a cleaner, low-carbon, and environmentally friendly alternative to traditional internal combustion engine (ICE) vehicles. With the increasing adoption of EVs, they are expected to eventually replace ICE vehicles entirely. However, the rapid growth of EVs has significantly increased energy demand, posing challenges for power grids and infrastructure. This surge in energy demand has driven advancements in developing efficient charging infrastructure and energy management solutions to mitigate the risks of power outages and disruptions caused by the rising number of EVs on the road. To address these challenges, various deep… More >

  • Open Access

    ARTICLE

    HybridLSTM: An Innovative Method for Road Scene Categorization Employing Hybrid Features

    Sanjay P. Pande1, Sarika Khandelwal2, Ganesh K. Yenurkar3,*, Rakhi D. Wajgi3, Vincent O. Nyangaresi4,5,*, Pratik R. Hajare6, Poonam T. Agarkar7

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5937-5975, 2025, DOI:10.32604/cmc.2025.064505 - 30 July 2025

    Abstract Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems, particularly in dynamic and unstructured environments. While recent advancements in deep learning have significantly enhanced road scene classification, simultaneously achieving high accuracy, computational efficiency, and adaptability across diverse conditions continues to be difficult. To address these challenges, this study proposes HybridLSTM, a novel and efficient framework that integrates deep learning-based, object-based, and handcrafted feature extraction methods within a unified architecture. HybridLSTM is designed to classify four distinct road scene categories—crosswalk (CW), highway (HW), overpass/tunnel (OP/T), and parking (P)—by… More >

  • Open Access

    ARTICLE

    Few-Short Photovoltaic Systems Predictions Algorithm in Cold-Wave Weather via WOA-CNN-LSTM Model

    Ruiheng Pan*, Shuyan Wang, Yihan Huang, Gang Ma

    Energy Engineering, Vol.122, No.8, pp. 3079-3098, 2025, DOI:10.32604/ee.2025.065124 - 24 July 2025

    Abstract Contemporary power network planning faces critical challenges from intensifying climate variability, including greenhouse effect amplification, extreme precipitation anomalies, and persistent thermal extremes. These meteorological disruptions compromise the reliability of renewable energy generation forecasts, particularly in photovoltaic (PV) systems. However, current predictive methodologies exhibit notable deficiencies in extreme weather monitoring, systematic transient phenomena analysis, and preemptive operational strategies, especially for cold-wave weather. In order to address these limitations, we propose a dual-phase data enhancement protocol that takes advantage of Time-series Generative Adversarial Networks (TimeGAN) for temporal pattern expansion and the K-medoids clustering algorithm for synthetic data… More >

  • Open Access

    ARTICLE

    Upholding Academic Integrity amidst Advanced Language Models: Evaluating BiLSTM Networks with GloVe Embeddings for Detecting AI-Generated Scientific Abstracts

    Lilia-Eliana Popescu-Apreutesei, Mihai-Sorin Iosupescu, Sabina Cristiana Necula, Vasile-Daniel Păvăloaia*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2605-2644, 2025, DOI:10.32604/cmc.2025.064747 - 03 July 2025

    Abstract The increasing fluency of advanced language models, such as GPT-3.5, GPT-4, and the recently introduced DeepSeek, challenges the ability to distinguish between human-authored and AI-generated academic writing. This situation is raising significant concerns regarding the integrity and authenticity of academic work. In light of the above, the current research evaluates the effectiveness of Bidirectional Long Short-Term Memory (BiLSTM) networks enhanced with pre-trained GloVe (Global Vectors for Word Representation) embeddings to detect AI-generated scientific abstracts drawn from the AI-GA (Artificial Intelligence Generated Abstracts) dataset. Two core BiLSTM variants were assessed: a single-layer approach and a dual-layer… More >

  • Open Access

    ARTICLE

    IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare

    Subrata Kumer Paul1,2, Abu Saleh Musa Miah3,4, Rakhi Rani Paul1,2, Md. Ekramul Hamid2, Jungpil Shin4,*, Md Abdur Rahim5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2513-2530, 2025, DOI:10.32604/cmc.2025.063563 - 03 July 2025

    Abstract The Internet of Things (IoT) and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients. Recognizing Medical-Related Human Activities (MRHA) is pivotal for healthcare systems, particularly for identifying actions critical to patient well-being. However, challenges such as high computational demands, low accuracy, and limited adaptability persist in Human Motion Recognition (HMR). While some studies have integrated HMR with IoT for real-time healthcare applications, limited research has focused on recognizing MRHA as essential for effective patient monitoring. This study proposes a novel HMR method tailored for MRHA detection, leveraging multi-stage deep… More >

Displaying 31-40 on page 4 of 307. Per Page