Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    An Optimized Ensemble Model for Prediction the Bandwidth of Metamaterial Antenna

    Abdelhameed Ibrahim1,*, Hattan F. Abutarboush2, Ali Wagdy Mohamed3,4, Mohamad Fouad1, El-Sayed M. El-kenawy5,6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 199-213, 2022, DOI:10.32604/cmc.2022.021886 - 03 November 2021

    Abstract Metamaterial Antenna is a special class of antennas that uses metamaterial to enhance their performance. Antenna size affects the quality factor and the radiation loss of the antenna. Metamaterial antennas can overcome the limitation of bandwidth for small antennas. Machine learning (ML) model is recently applied to predict antenna parameters. ML can be used as an alternative approach to the trial-and-error process of finding proper parameters of the simulated antenna. The accuracy of the prediction depends mainly on the selected model. Ensemble models combine two or more base models to produce a better-enhanced model. In… More >

  • Open Access

    ARTICLE

    Extensive Study of Cloud Computing Technologies, Threats and Solutions Prospective

    Mwaffaq Abu-Alhaija1, Nidal M. Turab1,*, AbdelRahman Hamza2

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 225-240, 2022, DOI:10.32604/csse.2022.019547 - 08 October 2021

    Abstract Infrastructure as a Service (IaaS) provides logical separation between data, network, applications and machines from the physical constrains of real machines. IaaS is one of the basis of cloud virtualization. Recently, security issues are also gradually emerging with virtualization of cloud computing. Different security aspects of cloud virtualization will be explored in this research paper, security recognizing potential threats or attacks that exploit these vulnerabilities, and what security measures are used to alleviate such threats. In addition, a discussion of general security requirements and the existing security schemes is also provided. As shown in this… More >

  • Open Access

    ARTICLE

    Allocation and Migration of Virtual Machines Using Machine Learning

    Suruchi Talwani1, Khaled Alhazmi2,*, Jimmy Singla1, Hasan J. Alyamani3, Ali Kashif Bashir4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3349-3364, 2022, DOI:10.32604/cmc.2022.020473 - 27 September 2021

    Abstract Cloud computing promises the advent of a new era of service boosted by means of virtualization technology. The process of virtualization means creation of virtual infrastructure, devices, servers and computing resources needed to deploy an application smoothly. This extensively practiced technology involves selecting an efficient Virtual Machine (VM) to complete the task by transferring applications from Physical Machines (PM) to VM or from VM to VM. The whole process is very challenging not only in terms of computation but also in terms of energy and memory. This research paper presents an energy aware VM allocation… More >

  • Open Access

    ARTICLE

    A Feature Selection Strategy to Optimize Retinal Vasculature Segmentation

    José Escorcia-Gutierrez1,4,*, Jordina Torrents-Barrena4, Margarita Gamarra2, Natasha Madera1, Pedro Romero-Aroca3, Aida Valls4, Domenec Puig4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2971-2989, 2022, DOI:10.32604/cmc.2022.020074 - 27 September 2021

    Abstract Diabetic retinopathy (DR) is a complication of diabetes mellitus that appears in the retina. Clinitians use retina images to detect DR pathological signs related to the occlusion of tiny blood vessels. Such occlusion brings a degenerative cycle between the breaking off and the new generation of thinner and weaker blood vessels. This research aims to develop a suitable retinal vasculature segmentation method for improving retinal screening procedures by means of computer-aided diagnosis systems. The blood vessel segmentation methodology relies on an effective feature selection based on Sequential Forward Selection, using the error rate of a… More >

  • Open Access

    ARTICLE

    A Novel Method Based on UNET for Bearing Fault Diagnosis

    Dileep Kumar1,*, Imtiaz Hussain Kalwar2, Tanweer Hussain1, Bhawani Shankar Chowdhry1, Sanaullah Mehran Ujjan1, Tayab Din Memon3

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 393-408, 2021, DOI:10.32604/cmc.2021.014941 - 04 June 2021

    Abstract Reliability of rotating machines is highly dependent on the smooth rolling of bearings. Thus, it is very essential for reliable operation of rotating machines to monitor the working condition of bearings using suitable fault diagnosis and condition monitoring approach. In the recent past, Deep Learning (DL) has become applicable in condition monitoring of rotating machines owing to its performance. This paper proposes a novel bearing fault diagnosis method based on the processing and analysis of the vibration images. The proposed method is the UNET model that is a recent development in DL models. The model More >

  • Open Access

    ARTICLE

    Adaptive Multi-Layer Selective Ensemble Least Square Support Vector Machines with Applications

    Gang Yu1,4,5, Jian Tang2,*, Jian Zhang3, Zhonghui Wang6

    Intelligent Automation & Soft Computing, Vol.29, No.1, pp. 273-290, 2021, DOI:10.32604/iasc.2021.016981 - 12 May 2021

    Abstract Kernel learning based on structure risk minimum can be employed to build a soft measuring model for analyzing small samples. However, it is difficult to select learning parameters, such as kernel parameter (KP) and regularization parameter (RP). In this paper, a soft measuring method is investigated to select learning parameters, which is based on adaptive multi-layer selective ensemble (AMLSEN) and least-square support vector machine (LSSVM). First, candidate kernels and RPs with K and R numbers are preset based on prior knowledge, and candidate sub-sub-models with K*R numbers are constructed through utilizing LSSVM. Second, the candidate More >

  • Open Access

    ARTICLE

    Assessment of Noise Exposure of Sawmill Workers in Southwest, Nigeria

    Abiola O. Ajayeoba1,*, Adewoye A. Olanipekun2, Wasiu A. Raheem3, Oluwaseun O. Ojo4, Ayowumi R. Soji–Adekunle4

    Sound & Vibration, Vol.55, No.1, pp. 69-85, 2021, DOI:10.32604/sv.2021.011639 - 19 January 2021

    Abstract Economic wood processing employs the use of industrial machines for cutting, shaping, milling, and sawing timber, thereby leading to the generation of high levels of noise. Published data from empirical studies have categorized noise as an environmental hazard of global significance. Furthermore, noise exposure limits for different industries and all the industrial machines available has not been formally established as it presently exists in developed nations around the world. Therefore, this study assessed the daily exposure of sawmills workers to noise in Southwestern Nigeria. Reconnaissance surveys were first carried out in Osun, Oyo, Ondo, Ekiti,… More >

  • Open Access

    ARTICLE

    Translation of Quantum Circuits into Quantum Turing Machines for Deutsch and Deutsch-Jozsa Problems

    Giuseppe Corrente*

    Journal of Quantum Computing, Vol.2, No.3, pp. 137-145, 2020, DOI:10.32604/jqc.2020.014586 - 31 December 2020

    Abstract We want in this article to show the usefulness of Quantum Turing Machine (QTM) in a high-level didactic context as well as in theoretical studies. We use QTM to show its equivalence with quantum circuit model for Deutsch and Deutsch-Jozsa algorithms. Further we introduce a strategy of translation from Quantum Circuit to Quantum Turing models by these examples. Moreover we illustrate some features of Quantum Computing such as superposition from a QTM point of view and starting with few simple examples very known in Quantum Circuit form. More >

  • Open Access

    ARTICLE

    A Novel System for Recognizing Recording Devices from Recorded Speech Signals

    Yongqiang Bao1, *, Qi Shao1, Xuxu Zhang1, Jiahui Jiang1, Yue Xie1, Tingting Liu1, Weiye Xu2

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2557-2570, 2020, DOI:10.32604/cmc.2020.011241 - 16 September 2020

    Abstract The field of digital audio forensics aims to detect threats and fraud in audio signals. Contemporary audio forensic techniques use digital signal processing to detect the authenticity of recorded speech, recognize speakers, and recognize recording devices. User-generated audio recordings from mobile phones are very helpful in a number of forensic applications. This article proposed a novel method for recognizing recording devices based on recorded audio signals. First, a database of the features of various recording devices was constructed using 32 recording devices (20 mobile phones of different brands and 12 kinds of recording pens) More >

  • Open Access

    ARTICLE

    Intelligent Choice of Machine Learning Methods for Predictive Maintenance of Intelligent Machines

    Marius Becherer, Michael Zipperle, Achim Karduck

    Computer Systems Science and Engineering, Vol.35, No.2, pp. 81-89, 2020, DOI:10.32604/csse.2020.35.081

    Abstract Machines are serviced too often or only when they fail. This can result in high costs for maintenance and machine failure. The trend of Industry 4.0 and the networking of machines opens up new possibilities for maintenance. Intelligent machines provide data that can be used to predict the ideal time of maintenance. There are different approaches to create a forecast. Depending on the method used, appropriate conditions must be created to improve the forecast. In this paper, results are compiled to give a state of the art of predictive maintenance. First, the different types of More >

Displaying 31-40 on page 4 of 47. Per Page