Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (228)
  • Open Access

    ARTICLE

    Mechanical Properties of Self-Compacting Rubberized Concrete with Different Rubber Types under Triaxial Compression

    Chunli Meng1, Weishu Fu1,*, Jianzeng Shen2,*, Yisheng Su1,2, Chunying Ye1

    Journal of Renewable Materials, Vol.11, No.2, pp. 581-598, 2023, DOI:10.32604/jrm.2022.022074

    Abstract Different rubber aggregates lead to changes in the effect of stress conditions on the mechanical behavior of concrete, and studies on the triaxial properties of self-compacting rubber concrete (SCRC) are rare. In this study, 35 cylindrical specimens taking lateral stress and rubber type as variables were prepared to study the fresh properties and mechanical behaviors of SCRC under triaxial compression, where the rubber contains two types, i.e., 380 μm rubber powder and 1–4 mm rubber particles, and four contents, i.e., 10%, 20% and 30%. The test results demonstrated that SCRC exhibited a typical oblique shear… More > Graphic Abstract

    Mechanical Properties of Self-Compacting Rubberized Concrete with Different Rubber Types under Triaxial Compression

  • Open Access

    ARTICLE

    Cellulose Acetate Blends – Effect of Plasticizers on Properties and Biodegradability

    Vu Thanh Phuong1,2, Steven Verstichel3, Patrizia Cinelli1,4, Irene Anguillesi1, Maria-Beatrice Coltelli1, Andrea Lazzeri1,*

    Journal of Renewable Materials, Vol.2, No.1, pp. 35-41, 2014, DOI:10.7569/JRM.2013.634136

    Abstract Cellulose acetate (CDA) cannot be processed as raw material because it starts to decompose before melting. Triacetin and diacetin were tested to improve CDA processing versus conventional phthalate as environmentally sustainable plasticizers, because of their low toxicity and fast biodegradability. The addition of triacetin and diacetin allowed melt processing of CDA and the results of tensile tests outlined their effect as plasticizers. The values of mechanical properties were compatible with the requirements for applications in rigid packaging. From the results of biodegradation tests it can be concluded that for pure cellulose acetate, complete biodegradation was More >

  • Open Access

    ARTICLE

    Synthesis of Oligo(butylene succinate)-based Polyurethanes: Infl uence of the Chemical Structure on Thermal and Mechanical Properties

    L. Poussard1,*, A. Mecheri1, J. Mariage1, I. Barakat1, L. Bonnaud1, J.-M. Raquez1,2, P. Dubois1,2

    Journal of Renewable Materials, Vol.2, No.1, pp. 13-22, 2014, DOI:10.7569/JRM.2013.634132

    Abstract Biobased oligo(butylene succinate)-based thermoplastic polyurethanes (TPUs) were prepared following a twostep polymerization process: condensation of succinic acid and butanediol and the chain extension of resulting hydroxyl-terminated butylene succinate oligomers (OBS) in the presence of butanediol as chain extender and isophorone diisocyanate (IPDI) as coupling agent. Mechanical and thermal properties of the elaborated TPUs were evaluated in terms of hard segment and compared with those of commercial polybutylene succinate (PBS), Bionolle 1001. Whatever the compositions, the ultimate tensile properties of OBS-based TPUs and Bionolle 1001 were found to exhibit similar values (εr ≈ 400%, σr ≈ 40 More >

  • Open Access

    ARTICLE

    Evaluation of Mechanical Properties and Durability Performance of HDPE-Wood Composites

    M. Tazi1, F. Erchiqui1,*, F.Godard1, H. Kaddami2

    Journal of Renewable Materials, Vol.2, No.4, pp. 258-263, 2014, DOI:10.7569/JRM.2014.634120

    Abstract This article evaluates the mechanical properties and biodegradability of wood-plastic composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The mechanical properties and biodegradability of the biocomposites were successively characterized. The results indicate that adding sawdust particles to a polymer matrix improves the mechanical strength and stiffness of composites. The tensile strength of a composite with 3% coupling agent was improved by 13%, 34% and 54% respectively when 20%, 30% and 40% wood… More >

  • Open Access

    ARTICLE

    Physical and Mechanical Properties of Polymer Composite Materials Based on Olive Husk Flour

    Amar Boukerrou*, Dalila Hammiche, Djidjelli Hocine, Hassina Aouat

    Journal of Renewable Materials, Vol.2, No.4, pp. 249-257, 2014, DOI:10.7569/JRM.2014.634119

    Abstract The lack of compatibility between cellulose fi bers and some polymers, such as thermoplastics, is due on one hand to the hydrophilic nature of the vegetable fi bers and on the other hand to the hydrophobic character of the matrix. This incompatibility induces bad dispersion of the fi bers and the formation of a heterogeneous material with mechanical properties which are not very satisfactory. The scope of this article is to describe the possibility of using Olive Husk Flour (OHF) as reinforcement in the elaboration of a composite material based on polyvinyl chloride (PVC). In More >

  • Open Access

    ARTICLE

    Flexible Polyurethane Foams Modifi ed with New Bio-Polyol Based on Rapeseed Oil

    Sławomir Michałowski, Aleksander Prociak*

    Journal of Renewable Materials, Vol.3, No.1, pp. 14-18, 2015, DOI:10.7569/JRM.2014.634131

    Abstract This article describes the effects of the modifi cation of polyurethane system with rapeseed oil-based polyol on the cell structure and physical-mechanical properties of conventional fl exible polyurethane foams. The foams were prepared by substituting a part of the petrochemical polyether-polyols mixture with the bio-polyol based on rapeseed oil. Selected physical-mechanical properties of these foams were examined and compared to the properties of reference foam. The properties such as apparent density, resilience, comfort factor and stress-strain characteristics were analyzed in compression tests. It was found that the modifi cation of polyurethane formulation with rapeseed oil-based More >

  • Open Access

    ARTICLE

    Formaldehyde-Free Prorobitenidin/Profi setinidin Tannin/ Furanic Foams Based on Alternative Aldehydes: Glyoxal and Glutaraldehyde

    X. Li1, A. Pizzi1,2,*, X. Zhou3,*, V. Fierro4, A. Celzard4

    Journal of Renewable Materials, Vol.3, No.2, pp. 142-150, 2015, DOI:10.7569/JRM.2014.634117

    Abstract Tannin/furanic foams, typically 95% composed of materials of natural origin such as prorobinetinidin/ profi setinidin tannins and furfuryl alcohol, are potential alternatives to oil-based synthetic foams such as phenol-formaldehyde, and polyurethane foams. This article describes the development of second generation tannin/furanic foams, which are not only formaldehyde free, but also use nonvolatile, nontoxic aldehydes. Both glyoxal and glutaraldehyde were tried to substitute formaldehyde in tannin/furanic foams. The physical properties of these new foams are described and discussed. It was found that glutaraldehyde can totally substitute formaldehyde during tannin/furanic foam preparation, but that glyoxal cannot. The More >

  • Open Access

    ARTICLE

    Bond Strength of Biodegradable Gelatin-Based Wood Adhesives

    D.N. Dorr, S.D. Frazier, K.M. Hess, L.S. Traeger, W.V. Srubar III*

    Journal of Renewable Materials, Vol.3, No.3, pp. 195-204, 2015, DOI:10.7569/JRM.2015.634108

    Abstract A study of the potential for gelatin-based derivatives to serve as biorenewable, biodegradable adhesives for wood and engineered wood products is presented in this article. The effect of gelatin-to-water weight percent on the mechanical, specifically ultimate breaking (bond) strength, and thermal properties was investigated using tensile testing and differential scanning calorimetry, respectively. The breaking strengths of the gelatin-based adhesives were characterized and compared to four commercially available wood adhesives. The effect of 1–5% tannin addition on the mechanical, thermal, and moisture absorption behavior of the gelatin-based adhesives was also investigated. Results show that the gelatin-based More >

  • Open Access

    ARTICLE

    Mechanical Characterization of Gelatin-Flax Natural-Fiber Composites for Construction

    K. M. Hess, W. V. Srubar III*

    Journal of Renewable Materials, Vol.3, No.3, pp. 175-182, 2015, DOI:10.7569/JRM.2015.634106

    Abstract This article concerns the development and characterization of a protein-based alternative to traditional fiberreinforced polymer (FRP) composites used in construction. In this work, gelatin-based resins were prepared at various gelatin-to-water (g/w) ratios. The effects of g/w ratio and curing time on resin mechanical properties were investigated. Using gelatin resins with a 30% g/w ratio, (i) gelatin-flax and (ii) gelatin-fiberglass composites were fabricated, and their mechanical properties were characterized and compared to both (iii) epoxy-flax and (iv) epoxy-fiberglass composites. Fracture surface morphologies were investigated using scanning electron microscopy. Results indicate that gelatin-flax composites exhibit similar mechanical More >

  • Open Access

    ARTICLE

    Analysis of the Performances and Optimization of Polyurethane Concrete with a Large Percentage of Fly Ash

    Tingting Huo1, Jiaquan Xue2,*, Zhi’an Fu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 437-450, 2023, DOI:10.32604/fdmp.2022.020696

    Abstract The properties of polyurethane concrete containing a large amount of fly ash are investigated, and accordingly, a model is introduced to account for the influence of fly ash fineness, water ratio, and loss of ignition (LOI) on its mechanical performances. This research shows that, after optimization, the concrete has a compressive strength of 20.8 MPa, a flexural strength of 3.4 MPa, and a compressive modulus of elasticity of 19.2 GPa. The main factor influencing 28 and 90 d compressive strength is fly ash content, water-binder ratio, and early strength agent content. More >

Displaying 51-60 on page 6 of 228. Per Page