Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (224)
  • Open Access


    Effect of Dry-Wet Cycles on the Transport and Mechanical Properties of Cement Mortar Subjected to Sulfate Attack

    Wei Chen1,*, Weijie Shan1, Yue Liang1, Frederic Skoczylas2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 679-696, 2023, DOI:10.32604/fdmp.2022.021249

    Abstract This study deals with the analysis of the detrimental effects of a “sulfate attack” on cement mortar for different dry-wet cycles. The mass loss, tensile strength, and gas permeability coefficient were determined and analyzed under different exposure conditions. At the same time, nitrogen adsorption (NAD), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques were used to analyze the corresponding variations in the microstructure and the corrosion products. The results show that certain properties of the cement mortar evolve differently according to the durations of the dry-wet cycles and that some damage is caused to the mortars in aqueous solution.… More >

  • Open Access


    Mechanical Properties and Durability of Sustainable Concrete Manufactured Using Ceramic Waste: A Review

    Peng Zhang1, Peishuo Zhang1, Jingjiang Wu2, Zhenhui Guo2, Yong Zhang2, Yuanxun Zheng1,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 937-974, 2023, DOI:10.32604/jrm.2022.023290

    Abstract Green and sustainable concrete has attracted significant attention from the construction industry and researchers since it was proposed. The ceramic waste materials are often directly buried in the ground or placed in an open dump, and the accumulation of ceramic waste contributes to environmental pollution, which makes the recycling of ceramic waste quite urgent. Owing to the pozzolanic activity, excellent mechanical properties and durability, industrial ceramic waste is considered as a suitable substitute for cement or natural aggregates to fabricate renewable concrete. In this paper, the pozzolanic activity of ceramic waste and the workability, mechanical performance, and durability of ceramic… More >

  • Open Access


    Modification of Wood by Tannin-Furfuryl Alcohol Resins–Effect on Dimensional Stability, Mechanical Properties and Decay Durability

    Mahdi Mubarok1,2, Christine Gérardin-Charbonnier1,*, Elham Azadeh1, Firmin Obounou Akong1, Stéphane Dumarçay1, Antonio Pizzi1, Philippe Gérardin1,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 505-521, 2023, DOI:10.32604/jrm.2022.024872

    Abstract Furfurylation is a well-known wood modification technology. This paper studied the effect of tannin addition on the wood furfurylation. Three kinds of dicarboxylic acids, adipic acid, succinic acid, and tartaric acid, as well as glyoxal as a comparing agent, were used to catalyse the polymerisation of furanic or tannin-furanic solutions during wood modification. Impregnation of furanic or tannin-furanic solution at a certain concentration into the wood followed with curing at 103°C for a specific duration was performed for the wood modification. Different properties of the modified woods like dimensional stability, resistance of treatment to leaching, mechanical properties, decay durability against… More >

  • Open Access


    The Promoting Effect of Multifunctional Groups on the Thermal and Mechanical Properties of PVC Materials

    Mei Wang1,*, Xinzhu Fan1, Xianghai Song2, Quan Bu1,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 867-880, 2023, DOI:10.32604/jrm.2022.022996

    Abstract The development of PVC materials grafted with mannich base originated from myrcene (P-MAM-g, where the mannich base derived from myrcene is abbreviated as MAM) via green and effective synthetic methods is a good strategy to avoid unacceptable discoloration and deterioration of thermal and mechanical properties caused by autocatalytic dehydrochlorination (DHC) during PVC processing. In this study, MAM with double bonds, amino groups, ester groups, and phospholipid groups was introduced into the chains of PVC to improve the thermal stability of PVC. The experimental results showed that the covalent attachment of MAM to PVC enhanced both the initial and the long-term… More >

  • Open Access


    Analysis of the Relationship between Mechanical Properties and Pore Structure of MSW Incineration Bottom Ash Fine Aggregate Concrete after Freeze-Thaw Cycles Based on the Gray Theory

    Peng Zhang1, Dongsheng Shi1,*, Ping Han1,2, Wenchao Jiang1,3

    Journal of Renewable Materials, Vol.11, No.2, pp. 669-688, 2023, DOI:10.32604/jrm.2022.022192

    Abstract The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles, and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste (MSW) incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation. In this paper, the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus, compressive strength, and microscopic porosity parameters to speculate on the most important factors affecting their changes. The GM (1,1) model was established based on the compressive… More >

  • Open Access


    Mechanical Test and Meso-Model Numerical Study of Composite Rubber Concrete under Salt-Freezing Cycle

    Mingkai Sun1,*, Yanan Wang2, Pingwei Jiang1, Zerong Song3, Zhan Gao4, Jiaming Xu5

    Journal of Renewable Materials, Vol.11, No.2, pp. 643-668, 2023, DOI:10.32604/jrm.2022.022168

    Abstract A composite rubber concrete (CRC) was designed by combining waste tire rubber particles with particle sizes of 3~5 mm, 1~3 mm and 20 mesh. Taking the rubber content of different particle sizes as the influencing factors, the range and variance analysis of the mechanical and impermeability properties of CRC was carried out by orthogonal test. Through analysis, it is concluded that the optimal proportion of 3~5 mm, 1~3 mm, and 20 mesh particle size composite rubber is 1:2.5:5. 5 kinds of CRC and 3 kinds of ordinary single-mixed rubber concrete (RC) with a total content of 10%~20% were designed under… More >

  • Open Access


    Mechanical Properties of Self-Compacting Rubberized Concrete with Different Rubber Types under Triaxial Compression

    Chunli Meng1, Weishu Fu1,*, Jianzeng Shen2,*, Yisheng Su1,2, Chunying Ye1

    Journal of Renewable Materials, Vol.11, No.2, pp. 581-598, 2023, DOI:10.32604/jrm.2022.022074

    Abstract Different rubber aggregates lead to changes in the effect of stress conditions on the mechanical behavior of concrete, and studies on the triaxial properties of self-compacting rubber concrete (SCRC) are rare. In this study, 35 cylindrical specimens taking lateral stress and rubber type as variables were prepared to study the fresh properties and mechanical behaviors of SCRC under triaxial compression, where the rubber contains two types, i.e., 380 μm rubber powder and 1–4 mm rubber particles, and four contents, i.e., 10%, 20% and 30%. The test results demonstrated that SCRC exhibited a typical oblique shear failure mode under triaxial compression… More > Graphic Abstract

    Mechanical Properties of Self-Compacting Rubberized Concrete with Different Rubber Types under Triaxial Compression

  • Open Access


    Cellulose Acetate Blends – Effect of Plasticizers on Properties and Biodegradability

    Vu Thanh Phuong1,2, Steven Verstichel3, Patrizia Cinelli1,4, Irene Anguillesi1, Maria-Beatrice Coltelli1, Andrea Lazzeri1,*

    Journal of Renewable Materials, Vol.2, No.1, pp. 35-41, 2014, DOI:10.7569/JRM.2013.634136

    Abstract Cellulose acetate (CDA) cannot be processed as raw material because it starts to decompose before melting. Triacetin and diacetin were tested to improve CDA processing versus conventional phthalate as environmentally sustainable plasticizers, because of their low toxicity and fast biodegradability. The addition of triacetin and diacetin allowed melt processing of CDA and the results of tensile tests outlined their effect as plasticizers. The values of mechanical properties were compatible with the requirements for applications in rigid packaging. From the results of biodegradation tests it can be concluded that for pure cellulose acetate, complete biodegradation was obtained within 200 days of… More >

  • Open Access


    Synthesis of Oligo(butylene succinate)-based Polyurethanes: Infl uence of the Chemical Structure on Thermal and Mechanical Properties

    L. Poussard1,*, A. Mecheri1, J. Mariage1, I. Barakat1, L. Bonnaud1, J.-M. Raquez1,2, P. Dubois1,2

    Journal of Renewable Materials, Vol.2, No.1, pp. 13-22, 2014, DOI:10.7569/JRM.2013.634132

    Abstract Biobased oligo(butylene succinate)-based thermoplastic polyurethanes (TPUs) were prepared following a twostep polymerization process: condensation of succinic acid and butanediol and the chain extension of resulting hydroxyl-terminated butylene succinate oligomers (OBS) in the presence of butanediol as chain extender and isophorone diisocyanate (IPDI) as coupling agent. Mechanical and thermal properties of the elaborated TPUs were evaluated in terms of hard segment and compared with those of commercial polybutylene succinate (PBS), Bionolle 1001. Whatever the compositions, the ultimate tensile properties of OBS-based TPUs and Bionolle 1001 were found to exhibit similar values (εr ≈ 400%, σr ≈ 40 MPa), which can be… More >

  • Open Access


    Evaluation of Mechanical Properties and Durability Performance of HDPE-Wood Composites

    M. Tazi1, F. Erchiqui1,*, F.Godard1, H. Kaddami2

    Journal of Renewable Materials, Vol.2, No.4, pp. 258-263, 2014, DOI:10.7569/JRM.2014.634120

    Abstract This article evaluates the mechanical properties and biodegradability of wood-plastic composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The mechanical properties and biodegradability of the biocomposites were successively characterized. The results indicate that adding sawdust particles to a polymer matrix improves the mechanical strength and stiffness of composites. The tensile strength of a composite with 3% coupling agent was improved by 13%, 34% and 54% respectively when 20%, 30% and 40% wood fi llers were added to… More >

Displaying 41-50 on page 5 of 224. Per Page