Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (118)
  • Open Access

    ARTICLE

    Fatigue Resistance and Cracking Mechanisms in an Aircraft AISI 4340 Steel with Surface Affected by Electro-Erosive and Water Jet Cutting

    I. Černý1,2, D. Mikulová1

    Structural Durability & Health Monitoring, Vol.6, No.1, pp. 43-52, 2010, DOI:10.3970/sdhm.2010.006.043

    Abstract Alternative methods of material machining like electro-erosive or water jet cutting, respectively, represent modern technologies, which are perspective to be used as final end-to-shape operations due to their possibilities of automatization and cutting precision. The paper contains results of an investigation of resistance of an aircraft AISI 4340 steel against fatigue loading performed using specimens loaded by three point bending at ambient temperature and standard laboratory conditions. Results of fatigue tests of specimens with surface after electro-erosive and water jet cutting, respectively, are presented, whereas in the latter case, areas of water jet incidence and outfall are studied separately. The… More >

  • Open Access

    ARTICLE

    Structural Integrity and Durability of High Voltage Composite (Non-Ceramic) Insulators

    M. Kumosa1

    Structural Durability & Health Monitoring, Vol.3, No.1, pp. 35-50, 2007, DOI:10.3970/sdhm.2007.003.035

    Abstract This paper deals with the structural integrity and durability of suspension composite (non-ceramic, polymer) insulators widely used in power transmission systems around the world. Under certain conditions, the insulators can fail in-service both electrically and mechanically resulting in the drop of energized transmission lines and power outages. In this work, predominantly mechanical failures of the insulators are discussed. In particular, the most important characteristics of a catastrophic failure process called brittle fracture are described. Subsequently, two examples of insulator failures by brittle fracture are shown and their causes explained. Finally, several recommendations on how to avoid brittle fracture as well… More >

  • Open Access

    ABSTRACT

    Deformation mechanisms in advanced Ti-based alloy in instrument-workpiece interaction

    Murat Demiral, Anish Roy, Vadim V. Silberschmidt

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.3, pp. 87-88, 2011, DOI:10.3970/icces.2011.017.087

    Abstract Industrial applications of Ti-based alloys especially in aerospace, marine and offshore industries have grown significantly over the years primarily due to their high strength, light weight as well as excellent temperature- and corrosion-resistance properties. Since these alloys are hard to machine, there is an obvious demand to develop simulation tools in order to analyze the material's behavior in machining processes, such as a turning, and to optimize process parameters. High levels of strains and strain rates accompanied by generated high temperatures characterize the deformation process in turning. The character of realisation of deformation mechanisms as well as a spatial distribution… More >

  • Open Access

    ARTICLE

    Discrete Modelling of Capillary Mechanisms in Multi-Phase Granular Media

    L. Scholtès1, B. Chareyre2, F.Nicot3, F. Darve4

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 297-318, 2009, DOI:10.3970/cmes.2009.052.297

    Abstract A numerical study of multi-phase granular materials based upon micro-mechanical modelling is proposed. Discrete element simulations are used to investigate capillary induced effects on the friction properties of a granular assembly in the pendular regime. Capillary forces are described at the local scale through the Young-Laplace equation and are superimposed to the standard dry particle interaction usually well simulated through an elastic-plastic relationship. Both effects of the pressure difference between liquid and gas phases and of the surface tension at the interface are integrated into the interaction model. Hydraulic hysteresis is accounted for based on the possible mechanism of formation… More >

  • Open Access

    ABSTRACT

    Review on Fatigue Crack Initiation Mechanisms of Interior Inclusion-induced Fracture of Metallic Materials in Very High Cycle Regime

    T. Sakai, W. Li, B. Lian, N. Oguma

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.1, pp. 7-8, 2011, DOI:10.3970/icces.2011.016.007

    Abstract Long term use of mechanical products provides us a lot of positive environmental effects such as saving resources, saving energy, reducing environmental load to globe and reducing the industrial wastes. Thus, fatigue property of metallic materials in very high cycle regime such as gigacycles has been a new important subject to ensure the long durability of actual mechanical structures during the latest decades. From this point of view, fatigue tests in the long life regime were performed for various kinds of metallic materials by many researchers and a series of experimental results were reported. One of most typical aspect in… More >

  • Open Access

    ABSTRACT

    Gating mechanisms of a mechanosensitive ion channel: experiments and molecular simulations

    M. Sokabe1,2,3, Sawada Y1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.2, pp. 47-48, 2009, DOI:10.3970/icces.2009.012.047

    Abstract Mechanosensing is ubiquitous in our body. Not only specialized mechanoreceptors like inner ear hair cells and visceral baroreceptors, but also ordinary cells can respond to mechanical stimuli, by which cells can regulate their volume, shape and motility properly. The major biophysical issue in this field is to understand the physicochemical mechanisms of mechanotransduction based on the molecular structure of mechanosensors. To date the mechanosesnitive (MS) ion channel is the only identified molecular class of mechanosensors. Among them the bacterial MS channel MscL is the best studied one owing to the resolved 3D structure of its closed state. MscL forms a… More >

  • Open Access

    ABSTRACT

    Control of Walking Robot by Inverse Dynamics of Link Mechanisms Using FEM

    S. Okamoto1, H. Noguchi2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 131-136, 2007, DOI:10.3970/icces.2007.002.131

    Abstract This paper presents a control of walking robot by using inverse dynamics of link mechanisms, which has already been proposed and applied in several in-plane motions. In this method, FEM is used for the discretization of equations of motion. This method calculates nodal forces by evaluating equations of motion in a matrix form, and thus information from the entire system can be handled efficiently, and the torques input to each joint of link mechanisms to achieve required motion are calculated easily. This method is suitable to the feed-forward control of closed-loop or continuously link mechanisms. In this paper, this inverse… More >

  • Open Access

    ARTICLE

    The Effect of Fiber Diameter on the Compressive Strength of Composites - A 3D Finite Element Based Study

    Ch,ra S. Yerramalli1, Anthony M. Waas2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.1, pp. 1-16, 2004, DOI:10.3970/cmes.2004.006.001

    Abstract Results from a 3D finite element based study of the compression response of unidirectional fiber reinforced polymer matrix composites (FRPC) are presented in this paper. The micromechanics based study was used to simulate the compressive response of glass and carbon fiber reinforced polymer matrix composites, with a view to understanding the effect of fiber diameter on compression strength. Results from the modeling and simulation indicate the presence of a complex three dimensional stress state in the matrix of the FRPC. Results from the simulation highlight the role of fiber diameter on the compressive response of FRPC. In particular, it is… More >

  • Open Access

    REVIEW

    Systems Neuroprotective Mechanisms in Ischemic Stroke

    Shu Q. Liu*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 75-85, 2019, DOI:10.32604/mcb.2019.06920

    Abstract Ischemic stroke, although causing brain infarction and neurological deficits, can activate innate neuroprotective mechanisms, including regional mechanisms within the ischemic brain and distant mechanisms from non-ischemic organs such as the liver, spleen, and pancreas, supporting neuronal survival, confining brain infarction, and alleviating neurological deficits. Both regional and distant mechanisms are defined as systems neuroprotective mechanisms. The regional neuroprotective mechanisms involve release and activation of neuroprotective factors such as adenosine and bradykinin, inflammatory responses, expression of growth factors such as nerve growth factors and neurotrophins, and activation and differentiation of resident neural stem cells to neurons and glial cells. The distant… More >

  • Open Access

    REVIEW

    Cardioprotective Mechanisms Activated in Response to Myocardial Ischemia

    Shu Q. Liu∗,†, Brandon J. Tefft*, Di Zhang*, Derek Roberts*, Daniel J. Schuster*, Allison Wu*

    Molecular & Cellular Biomechanics, Vol.8, No.4, pp. 319-338, 2011, DOI:10.3970/mcb.2011.008.319

    Abstract Myocardial ischemia, a disorder causing myocardial infarction and malfunction, can activate various adaptive mechanisms that protect cardiomyocytes from ischemic injury. During the early hours post myocardial ischemia, injured cardiac cells can release several molecules, including adenosine, opioids, and bradykinin, which promote myocardial survival by activating the G protein signaling pathways. During a later phase about several days, myocardial ischemia induces upregulation of growth factors and cytokines, including VEGF, ILGF, HGF, and SDF-1, in the injured myocardium, contributing to cardioprotection. In addition to the injured heart, the liver participates in cardioprotection. In response to myocardial ischemia, the liver upregulates and releases… More >

Displaying 101-110 on page 11 of 118. Per Page