Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification

    Tsu-Yang Wu1,2, Haonan Li2, Saru Kumari3, Chien-Ming Chen1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 19-46, 2024, DOI:10.32604/cmc.2024.048347

    Abstract Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN) is proposed. The Adaptive Fick’s Law Algorithm (AFLA) constitutes a novel metaheuristic algorithm introduced herein, encompassing three new strategies: Adaptive weight factor, Gaussian mutation, and probability update policy. With adaptive weight factor, the algorithm can adjust the weights according to the change in the number of iterations to improve the performance of the algorithm. Gaussian mutation helps the algorithm avoid… More >

  • Open Access

    ARTICLE

    Hybrid Optimization Algorithm for Handwritten Document Enhancement

    Shu-Chuan Chu1, Xiaomeng Yang1, Li Zhang2, Václav Snášel3, Jeng-Shyang Pan1,4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3763-3786, 2024, DOI:10.32604/cmc.2024.048594

    Abstract The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance; however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of… More >

  • Open Access

    ARTICLE

    Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models

    Yifan Huang1, Zikang Zhou1,2, Mingyu Li1, Xuedong Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3147-3165, 2024, DOI:10.32604/cmes.2024.045947

    Abstract Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management. In this study, Tuna Swarm Optimization (TSO), Whale Optimization Algorithm (WOA), and Cuckoo Search (CS) were used to optimize two hyperparameters in support vector regression (SVR). Based on these methods, three hybrid models to predict peak particle velocity (PPV) for bench blasting were developed. Eighty-eight samples were collected to establish the PPV database, eight initial blasting parameters were chosen as input parameters for the prediction model, and the PPV was the output parameter. As predictive performance evaluation indicators, the coefficient of determination (R2), root mean square… More >

  • Open Access

    ARTICLE

    An Enhanced Equilibrium Optimizer for Solving Optimization Tasks

    Yuting Liu1, Hongwei Ding1,*, Zongshan Wang1,*, Gaurav Dhiman2,3,4, Zhijun Yang1, Peng Hu5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2385-2406, 2023, DOI:10.32604/cmc.2023.039883

    Abstract The equilibrium optimizer (EO) represents a new, physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium. Despite its innovative foundation, the EO exhibits certain limitations, including imbalances between exploration and exploitation, the tendency to local optima, and the susceptibility to loss of population diversity. To alleviate these drawbacks, this paper introduces an improved EO that adopts three strategies: adaptive inertia weight, Cauchy mutation, and adaptive sine cosine mechanism, called SCEO. Firstly, a new update formula is conceived by incorporating an adaptive inertia weight to reach an appropriate balance… More >

  • Open Access

    ARTICLE

    An Effective Runge-Kutta Optimizer Based on Adaptive Population Size and Search Step Size

    Ala Kana, Imtiaz Ahmad*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3443-3464, 2023, DOI:10.32604/cmc.2023.040775

    Abstract A newly proposed competent population-based optimization algorithm called RUN, which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism, has gained wider interest in solving optimization problems. However, in high-dimensional problems, the search capabilities, convergence speed, and runtime of RUN deteriorate. This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN. Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms. Unlike the original RUN where population size is fixed throughout the search process, Adaptive-RUN automatically… More >

  • Open Access

    ARTICLE

    Ensemble of Population-Based Metaheuristic Algorithms

    Hao Li, Jun Tang*, Qingtao Pan, Jianjun Zhan, Songyang Lao

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2835-2859, 2023, DOI:10.32604/cmc.2023.038670

    Abstract No optimization algorithm can obtain satisfactory results in all optimization tasks. Thus, it is an effective way to deal with the problem by an ensemble of multiple algorithms. This paper proposes an ensemble of population-based metaheuristics (EPM) to solve single-objective optimization problems. The design of the EPM framework includes three stages: the initial stage, the update stage, and the final stage. The framework applies the transformation of the real and virtual population to balance the problem of exploration and exploitation at the population level and uses an elite strategy to communicate among virtual populations. The experiment tested two benchmark function… More >

  • Open Access

    ARTICLE

    New Denial of Service Attacks Detection Approach Using Hybridized Deep Neural Networks and Balanced Datasets

    Ouail Mjahed1,*, Salah El Hadaj1, El Mahdi El Guarmah1,2, Soukaina Mjahed1

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 757-775, 2023, DOI:10.32604/csse.2023.039111

    Abstract Denial of Service (DoS/DDoS) intrusions are damaging cyber-attacks, and their identification is of great interest to the Intrusion Detection System (IDS). Existing IDS are mainly based on Machine Learning (ML) methods including Deep Neural Networks (DNN), but which are rarely hybridized with other techniques. The intrusion data used are generally imbalanced and contain multiple features. Thus, the proposed approach aims to use a DNN-based method to detect DoS/DDoS attacks using CICIDS2017, CSE-CICIDS2018 and CICDDoS 2019 datasets, according to the following key points. a) Three imbalanced CICIDS2017-2018-2019 datasets, including Benign and DoS/DDoS attack classes, are used. b) A new technique based… More >

  • Open Access

    ARTICLE

    Selection of Metaheuristic Algorithm to Design Wireless Sensor Network

    Rakhshan Zulfiqar1,2, Tariq Javed1, Zain Anwar Ali2,*, Eman H. Alkhammash3, Myriam Hadjouni4

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 985-1000, 2023, DOI:10.32604/iasc.2023.037248

    Abstract The deployment of sensor nodes is an important aspect in mobile wireless sensor networks for increasing network performance. The longevity of the networks is mostly determined by the proportion of energy consumed and the sensor nodes’ access network. The optimal or ideal positioning of sensors improves the portable sensor networks effectiveness. Coverage and energy usage are mostly determined by successful sensor placement strategies. Nature-inspired algorithms are the most effective solution for short sensor lifetime. The primary objective of work is to conduct a comparative analysis of nature-inspired optimization for wireless sensor networks (WSNs’) maximum network coverage. Moreover, it identifies quantity… More >

  • Open Access

    ARTICLE

    An Efficient Approach Based on Remora Optimization Algorithm and Levy Flight for Intrusion Detection

    Abdullah Mujawib Alashjaee*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 235-254, 2023, DOI:10.32604/iasc.2023.036247

    Abstract With the recent increase in network attacks by threats, malware, and other sources, machine learning techniques have gained special attention for intrusion detection due to their ability to classify hundreds of features into normal system behavior or an attack attempt. However, feature selection is a vital preprocessing stage in machine learning approaches. This paper presents a novel feature selection-based approach, Remora Optimization Algorithm-Levy Flight (ROA-LF), to improve intrusion detection by boosting the ROA performance with LF. The developed ROA-LF is assessed using several evaluation measures on five publicly available datasets for intrusion detection: Knowledge discovery and data mining tools competition,… More >

  • Open Access

    ARTICLE

    Improved Supervised and Unsupervised Metaheuristic-Based Approaches to Detect Intrusion in Various Datasets

    Ouail Mjahed1,*, Salah El Hadaj1, El Mahdi El Guarmah1,2, Soukaina Mjahed1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 265-298, 2023, DOI:10.32604/cmes.2023.027581

    Abstract Due to the increasing number of cyber-attacks, the necessity to develop efficient intrusion detection systems (IDS) is more imperative than ever. In IDS research, the most effectively used methodology is based on supervised Neural Networks (NN) and unsupervised clustering, but there are few works dedicated to their hybridization with metaheuristic algorithms. As intrusion detection data usually contains several features, it is essential to select the best ones appropriately. Linear Discriminant Analysis (LDA) and t-statistic are considered as efficient conventional techniques to select the best features, but they have been little exploited in IDS design. Thus, the research proposed in this… More >

Displaying 1-10 on page 1 of 40. Per Page