Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    ARTICLE

    MWaOA: A Bio-Inspired Metaheuristic Algorithm for Resource Allocation in Internet of Things

    Rekha Phadke1, Abdul Lateef Haroon Phulara Shaik2, Dayanidhi Mohapatra3, Doaa Sami Khafaga4,*, Eman Abdullah Aldakheel4, N. Sathyanarayana5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.067564 - 09 December 2025

    Abstract Recently, the Internet of Things (IoT) technology has been utilized in a wide range of services and applications which significantly transforms digital ecosystems through seamless interconnectivity between various smart devices. Furthermore, the IoT plays a key role in multiple domains, including industrial automation, smart homes, and intelligent transportation systems. However, an increasing number of connected devices presents significant challenges related to efficient resource allocation and system responsiveness. To address these issue, this research proposes a Modified Walrus Optimization Algorithm (MWaOA) for effective resource management in smart IoT systems. In the proposed MWaOA, a crowding process… More >

  • Open Access

    ARTICLE

    Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems

    Junxiang Li1,2, Zhipeng Dong2, Ben Han3, Jianqiao Chen3, Xinxin Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070816 - 10 November 2025

    Abstract Owing to their global search capabilities and gradient-free operation, metaheuristic algorithms are widely applied to a wide range of optimization problems. However, their computational demands become prohibitive when tackling high-dimensional optimization challenges. To effectively address these challenges, this study introduces cooperative metaheuristics integrating dynamic dimension reduction (DR). Building upon particle swarm optimization (PSO) and differential evolution (DE), the proposed cooperative methods C-PSO and C-DE are developed. In the proposed methods, the modified principal components analysis (PCA) is utilized to reduce the dimension of design variables, thereby decreasing computational costs. The dynamic DR strategy implements periodic… More >

  • Open Access

    ARTICLE

    Pareto Multi-Objective Reconfiguration of IEEE 123-Bus Unbalanced Power Distribution Networks Using Metaheuristic Algorithms: A Comprehensive Analysis of Power Quality Improvement

    Nisa Nacar Çıkan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3279-3327, 2025, DOI:10.32604/cmes.2025.065442 - 30 June 2025

    Abstract This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks (UPDNs), focusing on the complex 123-Bus test system. Three scenarios are investigated: (1) simultaneous power loss reduction and voltage profile improvement, (2) minimization of voltage and current unbalance indices under various operational cases, and (3) multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index, active power loss, and current unbalance index. Unlike previous research that oftensimplified system components, this work maintains all equipment, including capacitor banks, transformers, and voltage regulators, to ensure realistic results. The study evaluates twelve metaheuristic More >

  • Open Access

    ARTICLE

    Metaheuristic-Driven Abnormal Traffic Detection Model for SDN Based on Improved Tyrannosaurus Optimization Algorithm

    Hui Xu, Jiahui Chen*, Zhonghao Hu

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4495-4513, 2025, DOI:10.32604/cmc.2025.062189 - 19 May 2025

    Abstract Nowadays, abnormal traffic detection for Software-Defined Networking (SDN) faces the challenges of large data volume and high dimensionality. Since traditional machine learning-based detection methods have the problem of data redundancy, the Metaheuristic Algorithm (MA) is introduced to select features before machine learning to reduce the dimensionality of data. Since a Tyrannosaurus Optimization Algorithm (TROA) has the advantages of few parameters, simple implementation, and fast convergence, and it shows better results in feature selection, TROA can be applied to abnormal traffic detection for SDN. However, TROA suffers from insufficient global search capability, is easily trapped in… More >

  • Open Access

    ARTICLE

    SL-COA: Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis

    Yunhan Ling1, Huajun Peng2, Yiqing Shi1,*, Chao Xu1, Jingzhen Yan1, Jingjing Wang1, Hui Ma3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 767-808, 2025, DOI:10.32604/cmes.2025.061763 - 11 April 2025

    Abstract The traditional first-order reliability method (FORM) often encounters challenges with non-convergence of results or excessive calculation when analyzing complex engineering problems. To improve the global convergence speed of structural reliability analysis, an improved coati optimization algorithm (COA) is proposed in this paper. In this study, the social learning strategy is used to improve the coati optimization algorithm (SL-COA), which improves the convergence speed and robustness of the new heuristic optimization algorithm. Then, the SL-COA is compared with the latest heuristic optimization algorithms such as the original COA, whale optimization algorithm (WOA), and osprey optimization algorithm… More >

  • Open Access

    ARTICLE

    Ensemble Filter-Wrapper Text Feature Selection Methods for Text Classification

    Oluwaseun Peter Ige1,2, Keng Hoon Gan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1847-1865, 2024, DOI:10.32604/cmes.2024.053373 - 27 September 2024

    Abstract Feature selection is a crucial technique in text classification for improving the efficiency and effectiveness of classifiers or machine learning techniques by reducing the dataset’s dimensionality. This involves eliminating irrelevant, redundant, and noisy features to streamline the classification process. Various methods, from single feature selection techniques to ensemble filter-wrapper methods, have been used in the literature. Metaheuristic algorithms have become popular due to their ability to handle optimization complexity and the continuous influx of text documents. Feature selection is inherently multi-objective, balancing the enhancement of feature relevance, accuracy, and the reduction of redundant features. This… More >

  • Open Access

    ARTICLE

    Far and Near Optimization: A New Simple and Effective Metaphor-Less Optimization Algorithm for Solving Engineering Applications

    Tareq Hamadneh1,2, Khalid Kaabneh3, Omar Alssayed4, Kei Eguchi5,*, Zeinab Monrazeri6, Mohammad Dehghani6

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1725-1808, 2024, DOI:10.32604/cmes.2024.053236 - 27 September 2024

    Abstract In this article, a novel metaheuristic technique named Far and Near Optimization (FNO) is introduced, offering versatile applications across various scientific domains for optimization tasks. The core concept behind FNO lies in integrating global and local search methodologies to update the algorithm population within the problem-solving space based on moving each member to the farthest and nearest member to itself. The paper delineates the theory of FNO, presenting a mathematical model in two phases: (i) exploration based on the simulation of the movement of a population member towards the farthest member from itself and (ii)… More >

  • Open Access

    ARTICLE

    BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems

    Farouq Zitouni1,*, Saad Harous2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Guojiang Xiong6, Fatima Zohra Khechiba1, Khadidja Kherchouche1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 219-265, 2024, DOI:10.32604/cmes.2024.052001 - 20 August 2024

    Abstract Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems. This approach aims to leverage the strengths of multiple algorithms, enhancing solution quality, convergence speed, and robustness, thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks. In this paper, we introduce a hybrid algorithm that amalgamates three distinct metaheuristics: the Beluga Whale Optimization (BWO), the Honey Badger Algorithm (HBA), and the Jellyfish Search (JS) optimizer. The proposed hybrid algorithm will be referred to as BHJO. Through this fusion, the BHJO algorithm aims to… More >

  • Open Access

    REVIEW

    Systematic Review: Load Balancing in Cloud Computing by Using Metaheuristic Based Dynamic Algorithms

    Darakhshan Syed*, Ghulam Muhammad, Safdar Rizvi

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 437-476, 2024, DOI:10.32604/iasc.2024.050681 - 11 July 2024

    Abstract Cloud Computing has the ability to provide on-demand access to a shared resource pool. It has completely changed the way businesses are managed, implement applications, and provide services. The rise in popularity has led to a significant increase in the user demand for services. However, in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization. This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms. Specifically, metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic. More >

  • Open Access

    ARTICLE

    Enhancing Wireless Sensor Network Efficiency through Al-Biruni Earth Radius Optimization

    Reem Ibrahim Alkanhel1, Doaa Sami Khafaga2, Ahmed Mohamed Zaki3, Marwa M. Eid4,5, Abdyalaziz A. Al-Mooneam6, Abdelhameed Ibrahim7, S. K. Towfek3,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3549-3568, 2024, DOI:10.32604/cmc.2024.049582 - 20 June 2024

    Abstract The networks of wireless sensors provide the ground for a range of applications, including environmental monitoring and industrial operations. Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization. Network infrastructure planning should be focused on increasing performance, and it should be affected by the detailed data about node distribution. This work recommends the creation of each sensor’s specs and radius of influence based on a particular geographical location, which will contribute to better network planning and design. By using the ARIMA model for time… More >

Displaying 1-10 on page 1 of 50. Per Page