Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (68)
  • Open Access

    ARTICLE

    Robust Prediction of the Bandwidth of Metamaterial Antenna Using Deep Learning

    Abdelaziz A. Abdelhamid1,3,*, Sultan R. Alotaibi2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2305-2321, 2022, DOI:10.32604/cmc.2022.025739 - 29 March 2022

    Abstract The design of microstrip antennas is a complex and time-consuming process, especially the step of searching for the best design parameters. Meanwhile, the performance of microstrip antennas can be improved using metamaterial, which results in a new class of antennas called metamaterial antenna. Several parameters affect the radiation loss and quality factor of this class of antennas, such as the antenna size. Recently, the optimal values of the design parameters of metamaterial antennas can be predicted using machine learning, which presents a better alternative to simulation tools and trial-and-error processes. However, the prediction accuracy depends… More >

  • Open Access

    ARTICLE

    Design and Analysis of Novel Antenna for Millimeter-Wave Communication

    Omar A. Saraereh*

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 413-422, 2022, DOI:10.32604/csse.2022.024202 - 23 March 2022

    Abstract At present, the microwave frequency band bandwidth used for mobile communication is only 600 MHz. In 2020, the 5G mobile Communication required about 1 GHz of bandwidth, so people need to tap new spectrum resources to meet the development needs of mobile Internet traffic that will increase by 1,000 times in the next 10 years. Utilize the potentially large bandwidth (30∼300 GHz) of the millimeter wave frequency band to provide higher data rates is regarded as the potential development trend of the future wireless communication technology. A microstrip patch implementation approach based on electromagnetic coupling feeding… More >

  • Open Access

    ARTICLE

    Triple-Band Metamaterial Inspired Antenna for Future Terahertz (THz) Applications

    Adel Y. I. Ashyap1, S. Alamri2, S. H. Dahlan1,*, Z. Z. Abidin3, M. Inam Abbasi4, Huda A. Majid2, M. R. Kamarudin1, Y. A. Al-Gumaei5, M. Hashim Dahri6

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1071-1087, 2022, DOI:10.32604/cmc.2022.025636 - 24 February 2022

    Abstract For future healthcare in the terahertz (THz) band, a triple-band microstrip planar antenna integrated with metamaterial (MTM) based on a polyimide substrate is presented. The frequencies of operation are 500, 600, and 880 GHz. The triple-band capability is accomplished by etching metamaterial on the patch without affecting the overall antenna size. Instead of a partial ground plane, a full ground plane is used as a buffer to shield the body from back radiation emitted by the antenna. The overall dimension of the proposed antenna is 484 × 484 μm2. The antenna's performance is investigated based on different crucial factors,… More >

  • Open Access

    ARTICLE

    Optimized Ensemble Algorithm for Predicting Metamaterial Antenna Parameters

    El-Sayed M. El-kenawy1,2, Abdelhameed Ibrahim3,*, Seyedali Mirjalili4,5, Yu-Dong Zhang6, Shaima Elnazer7,8, Rokaia M. Zaki9,10

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4989-5003, 2022, DOI:10.32604/cmc.2022.023884 - 14 January 2022

    Abstract Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance. Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas. Machine learning is receiving a lot of interest in optimizing solutions in a variety of areas. Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today's technology. The accuracy of the forecast is mostly determined by the model used. The purpose of this article is to provide an optimal ensemble model for predicting the bandwidth and gain of… More >

  • Open Access

    ARTICLE

    Double-E-Triple-H-Shaped NRI-Metamaterial for Dual-Band Microwave Sensing Applications

    Shafayat Hossain1, Md. Iquebal Hossain Patwary1, Sikder Sunbeam Islam1, Sultan Mahmud1,2, Norbahiah Binti Misran2, Ali F. Almutairi3, Mohammad Tariqul Islam2,*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5817-5836, 2022, DOI:10.32604/cmc.2022.022042 - 14 January 2022

    Abstract This paper presents a new Double-E-Triple-H-Shaped NRI (negative refractive index) metamaterial (MM) for dual-band microwave sensing applications. Here, a horizontal H-shaped metal structure is enclosed by two face-to-face E-shaped metal structures. This double-E-H-shaped design is also encased by two vertical H-shaped structures along with some copper links. Thus, the Double-E-Triple-H-Shaped configuration is developed. Two popular substrate materials of Rogers RO 3010 and FR-4 were adopted for analyzing the characteristics of the unit cell. The proposed structure exhibits transmission resonance inside the S-band with NRI and ENG (Epsilon Negative) metamaterial properties, and inside the C-band with… More >

  • Open Access

    ARTICLE

    Metamaterial-Based Compact Antenna with Defected Ground Structure for 5G and Beyond

    Md. Mushfiqur Rahman1,*, Md. Shabiul Islam1, Mohammad Tariqul Islam2, Samir Salem Al-Bawri3, Wong Hin Yong1

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2383-2399, 2022, DOI:10.32604/cmc.2022.022150 - 07 December 2021

    Abstract In this paper, a unit cell of a single-negative metamaterial structure loaded with a meander line and defected ground structure (DGS) is investigated as the principle radiating element of an antenna. The unit cell antenna causes even or odd mode resonances similar to the unit cell structure depending on the orientation of the microstrip feed used to excite the unit cell. However, the orientation which gives low-frequency resonance is considered here. The unit cell antenna is then loaded with a meander line which is parallel to the split bearing side and connects the other two… More >

  • Open Access

    ARTICLE

    Computational Investigation of Multiband EMNZ Metamaterial Absorber for Terahertz Applications

    Ismail Hossain1, Md Samsuzzaman2, Mohd Hafiz Baharuddin3,*, Norsuzlin Binti Mohd Sahar1, Mandeep Singh Jit Singh1, Mohammad Tariqul Islam3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3905-3920, 2022, DOI:10.32604/cmc.2022.022027 - 07 December 2021

    Abstract This study presents an Epsilon Mu near-zero (EMNZ) nanostructured metamaterial absorber (NMMA) for visible regime applications. The resonator and dielectric layers are made of tungsten (W) and quartz (fused), where the working band is expanded by changing the resonator layer's design. Due to perfect impedance matching with plasmonic resonance characteristics, the proposed NMMA structure is achieved an excellent absorption of 99.99% at 571 THz, 99.50% at 488.26 THz, and 99.32% at 598 THz frequencies. The absorption mechanism is demonstrated by the theory of impedance, electric field, and power loss density distributions, respectively. The geometric parameters… More >

  • Open Access

    ARTICLE

    Inkjet Printed Metamaterial Loaded Antenna for WLAN/WiMAX Applications

    Farhad Bin Ashraf1, Touhidul Alam2,*, Md Tarikul Islam3, Mandeep Jit Singh3, Norbahiah Binti Misran3, Mohammad Tariqul Islam3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2271-2284, 2022, DOI:10.32604/cmc.2022.021751 - 07 December 2021

    Abstract In this paper, the design and performance analysis of an Inkjet-printed metamaterial loaded monopole antenna is presented for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. The proposed metamaterial structure consists of two layers, one is rectangular tuning fork-shaped antenna, and another layer is an inkjet-printed metamaterial superstate. The metamaterial layer is designed using four split-ring resonators (SRR) with an H-shaped inner structure to achieve negative-index metamaterial properties. The metamaterial structure is fabricated on low-cost photo paper substrate material using a conductive ink-based inkjet printing technique, which achieved dual negative… More >

  • Open Access

    ARTICLE

    Gain Enhancement of Dielectric Resonator Antenna Using Electromagnetic Bandgap Structure

    Amor Smida1,2,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1613-1623, 2022, DOI:10.32604/cmc.2022.022289 - 03 November 2021

    Abstract High gain antennas are highly desirable for long-range wireless communication systems. In this paper, a compact, low profile, and high gain dielectric resonator antenna is proposed, fabricated, experimentally tested, and verified. The proposed antenna system has a cylindrical dielectric resonator antenna with a height of 9 mm and a radius of 6.35 mm as a radiating element. The proposed dielectric resonator antenna is sourced with a slot while the slot is excited with a rectangular microstrip transmission line. The microstrip transmission line is designed for a 50 Ω impedance to provide maximum power to the… More >

  • Open Access

    ARTICLE

    Decagonal C-Shaped CSRR Textile-Based Metamaterial for Microwave Applications

    Kabir Hossain1,2, Thennarasan Sabapathy1,2,*, Muzammil Jusoh1,2, Ping Jack Soh1,3, Samir Salem Al-Bawri4, Mohamed Nasrun Osman1,2, Hasliza A. Rahim1,2, Danai Torrungrueng5, Prayoot Akkaraekthalin6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1677-1693, 2022, DOI:10.32604/cmc.2022.022227 - 03 November 2021

    Abstract This paper introduces a decagonal C-shaped complementary split-ring resonator (CSRR) textile-based metamaterial (MTM). The overall size of the proposed sub-wavelength MTM unit cell is 0.28λ0 × 0.255λ0 at 3 GHz. Its stopband behaviour was first studied prior analysing the negative index properties of the proposed MTM. It is worth noting that in this work a unique way the experiments were completed. For both simulations and measurements, the proposed MTM exhibited negative-permittivity and negative-refractive index characteristics with an average bandwidth of more than 3 GHz (considering 1.7 to 8.2 GHz as the measurements were carried out within this range).… More >

Displaying 31-40 on page 4 of 68. Per Page