Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    A New Approach for Evaluating and Optimizing Hydraulic Fracturing in Coalbed Methane Reservoirs

    Xia Yan1, Wei Wang1, Kai Shen2,*, Yanqing Feng1, Junyi Sun1, Xiaogang Li1, Wentao Zhu1, Binbin Shi1, Guanglong Sheng2,3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070360 - 27 December 2025

    Abstract In the development of coalbed methane (CBM) reservoirs using multistage fractured horizontal wells, there often exist areas that are either repeatedly stimulated or completely unstimulated between fracturing stages, leading to suboptimal reservoir performance. Currently, there is no well-established method for accurately evaluating the effectiveness of such stimulation. This study introduces, for the first time, the concept of the Fracture Network Bridging Coefficient (FNBC) as a novel metric to assess stimulation performance. By quantitatively coupling the proportions of unstimulated and overstimulated volumes, the FNBC effectively characterizes the connectivity and efficiency of the fracture network. A background… More >

  • Open Access

    ARTICLE

    Influence of LiCF3SO3 on the Conductivity and Other Characteristics of Methylcellulose/PVA Blend-Based Electrolytes

    Nurrul Asyiqin Shamsuri1, Zamil Khairuddin2, Muhamad Hafiz Hamsan3, Norhana Abdul Halim4, Mohd Fakhrul Zamani Kadir1,5, Muhammad Fadhlullah Shukur6,7,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 729-742, 2025, DOI:10.32604/jpm.2025.069060 - 30 September 2025

    Abstract Polymeric materials have emerged as a promising alternative to electrolytic solutions in energy storage applications. However, high crystallinity and poor ionic conductivity are the main barriers restricting their daily application. In this study, we propose a polymer electrolyte system consisting of methylcellulose-polyvinyl alcohol (MC-PVA) blend as host material and lithium trifluoromethanesulfonate (LiCF3SO3) as dopant, which was prepared using the solution-casting method. The electrochemical impedance spectroscopy (EIS) analysis revealed a maximum conductivity of 5.42 × 10−6 S cm−1 with 40 wt.% LiCF3SO3. The key findings demonstrated that the variation in the dielectric loss (εi) and dielectric constant (εr) was… More >

  • Open Access

    ARTICLE

    Impact of Permeability Heterogeneity on Methane Hydrate Production Behavior during Depressurization with Controlled Sand Production

    Junyu Deng1,2, Rui Zhang1,*, Xudong Zhao3, Hongzhi Xu1,2, Peng Ji1, Zizhen Zhang1, Yifan Yang1

    Energy Engineering, Vol.122, No.10, pp. 4153-4168, 2025, DOI:10.32604/ee.2025.065906 - 30 September 2025

    Abstract Field tests have demonstrated that depressurization with controlled sand production is an effective technique for natural gas hydrate extraction. Variations in depositional environments and processes result in significant heterogeneity within subsea natural gas hydrate-bearing sediments. However, the influence of permeability heterogeneity on production performance during depressurization with controlled sand production remains inadequately understood. In this study, a multiphase, multi-component mathematical model is developed to simulate depressurization with controlled sand production in methane hydrate-bearing sediments, incorporating geological conditions representative of unconsolidated argillaceous siltstone hydrate deposits in the Shenhu area of the South China Sea. The effects… More >

  • Open Access

    ARTICLE

    Spatiotemporal Variability of Atmospheric Pollutants in Syria: A Multi-Year Assessment Using Sentinel-5P Data

    Almustafa Abd Elkader Ayek1, Bilel Zerouali2,*, Ankur Srivastava3, Mohannad Ali Loho4,5, Nadjem Bailek6,7, Celso Augusto Guimarães Santos8,9

    Revue Internationale de Géomatique, Vol.34, pp. 669-689, 2025, DOI:10.32604/rig.2025.067137 - 19 August 2025

    Abstract This study investigates the spatial and temporal dynamics of key air pollutants—nitrogen dioxide (NO2), carbon monoxide (CO), methane (CH4), formaldehyde (HCHO), and the ultraviolet aerosol index (UVAI)—over the period 2019–2024. Utilizing high-resolution remote sensing data from the Sentinel-5 Precursor satellite and its TROPOspheric Monitoring Instrument (TROPOMI) processed via Google Earth Engine (GEE), pollutant concentrations were analyzed, with spatial visualizations produced using ArcGIS Pro. The results reveal that urban and industrial hotspots—notably in Damascus, Aleppo, Homs, and Hama—exhibit elevated NO2 and CO levels, strongly correlated with population density, traffic, and industrial emissions. Temporal trends indicate significant pollutant fluctuations More > Graphic Abstract

    Spatiotemporal Variability of Atmospheric Pollutants in Syria: A Multi-Year Assessment Using Sentinel-5P Data

  • Open Access

    ARTICLE

    Optimization of Fracture Propagation in Coal Seams Using Discrete Lattice Method: Case Study of the L Block, China

    Xuesong Xing1, Li Wang1, Guangai Wu1, Chengyong Peng1,2,3, Yanan Hou1, Jingyu Zi1, Biao Yin2,3,*

    Energy Engineering, Vol.122, No.7, pp. 2911-2930, 2025, DOI:10.32604/ee.2025.065384 - 27 June 2025

    Abstract Hydraulic fracturing, an effective method for enhancing coal seam productivity, largely determines coalbed methane (CBM) production, which is significantly influenced by geological and engineering factors. This study focuses on the L block to investigate the mechanisms influencing efficient fracture propagation and enhanced stimulated reservoir volume (SRV) in fracturing. To explore the mechanisms influencing effective fracture propagation and enhanced SRV, the L block was selected as the research object, with a comprehensive consideration of geological background, reservoir properties, and dynamic production data. By combining the discrete lattice method with numerical analysis and true triaxial experimental simulation,… More >

  • Open Access

    ARTICLE

    Hydrogen-Methane Blend Storage in Depleted Reservoirs: An Option for Reusing Decommissioned Offshore Platforms

    Anna Chiara Uggenti1, Giorgio Rech2, Raffaella Gerboni2,*, Gianmario Ledda2, Amedeo Aliberti1, Claudia Vivalda3, Emanuela Bruno2, Andrea Carpignano2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.4, pp. 757-782, 2025, DOI:10.32604/fdmp.2025.062347 - 06 May 2025

    Abstract The paper presents an innovative approach to studying the reuse of a decommissioned natural gas production platform for the seasonal storage and extraction of a hydrogen-methane (H2-CH4) mixture from a depleted reservoir. The reuse plan involves removing outdated equipment from the platform’s decks while retaining essential components such as wellheads and separators. Exploiting a depleted reservoir for the injection of an H2-CH4 mixture requires a thorough understanding of its specific characteristics. This paper focuses on the engineering approach adopted in the basic design phase for such a conversion, providing recommendations and HSE guidelines. Given the hazardous… More >

  • Open Access

    ARTICLE

    Steam Methane Reforming (SMR) Combined with Ship Based Carbon Capture (SBCC) for an Efficient Blue Hydrogen Production on Board Liquefied Natural Gas (LNG) Carriers

    Ikram Belmehdi1,*, Boumedienne Beladjine1, Mohamed Djermouni1, Amina Sabeur1, Mohammed El Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 71-85, 2025, DOI:10.32604/fdmp.2024.058510 - 24 January 2025

    Abstract The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefied natural gas (LNG) carrier. This investigation focuses on integrating two distinct processes—steam methane reforming (SMR) and ship-based carbon capture (SBCC). The first refers to the common practice used to obtain hydrogen from methane (often derived from natural gas), where steam reacts with methane to produce hydrogen and carbon dioxide (CO2). The second refers to capturing the CO2 generated during the SMR process on board ships. By capturing and storing the carbon emissions, the process significantly reduces its… More >

  • Open Access

    ARTICLE

    Factors Influencing Proppant Transportation and Hydraulic Fracture Conductivity in Deep Coal Methane Reservoirs

    Fan Yang1,2,*, Honggang Mi1,2, Jian Wu1,2, Qi Yang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2637-2656, 2024, DOI:10.32604/fdmp.2024.048574 - 28 October 2024

    Abstract The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly, the water output is high, the supporting effect is poor, the effective supporting fracture size is limited, and the migration mechanism of proppant in deep coal reservoir is not clear at present. To investigate the migration behavior of proppants in complex fractures during the volume reconstruction of deep coal and rock reservoirs, an optimization test on the conductivity of low-density proppants and simulations of proppant migration in complex fractures of deep coal reservoirs were conducted. The study systematically analyzed the impact of… More >

  • Open Access

    ARTICLE

    Physical-Rheological Properties and Performances of Rejuvenated (Styrene-Butadiene-Styrene) Asphalt with Polymerized-MDI and Aromatic Oil

    Ao Lu1, Ming Xiong1, Chen Chen1, Liangjiang Li1, Haibei Tan1, Xiong Xu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1633-1646, 2024, DOI:10.32604/fdmp.2024.051010 - 23 July 2024

    Abstract Traditional asphalt rejuvenators, like aromatic oil (AO), are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS (styrene-butadiene-styrene) modified asphalt (SBSMA) binders and mixtures. However, these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS. In this study, a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate (PMDI) was used to assist the traditional AO asphalt rejuvenator. The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding… More > Graphic Abstract

    Physical-Rheological Properties and Performances of Rejuvenated (Styrene-Butadiene-Styrene) Asphalt with Polymerized-MDI and Aromatic Oil

  • Open Access

    ARTICLE

    Influence of Methane-Hydrogen Mixture Characteristics on Compressor Vibrations

    Vladimir Ya. Modorskii, Ivan E. Cherepanov*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1031-1043, 2024, DOI:10.32604/fdmp.2024.048494 - 07 June 2024

    Abstract A transition to clean hydrogen energy will not be possible until the issues related to its production, transportation, storage, etc., are adequately resolved. Currently, however, it is possible to use methane-hydrogen mixtures. Natural gas can be transported using a pipeline system with the required pressure being maintained by gas compression stations. This method, however, is affected by some problems too. Compressors emergency stops can be induced by vibrations because in some cases, mechanical methods are not able to reduce the vibration amplitude. As an example, it is known that a gas-dynamic flow effect in labyrinth… More >

Displaying 1-10 on page 1 of 37. Per Page