Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (132)
  • Open Access

    PROCEEDINGS

    Mechanisms of Thermo-Mechanical Fatigue Crack Growth in a Polycrystalline Ni-Base Superalloy

    Lu Zhang1,*, Yuzhuo Wang1, Zhiwei Yu1, Rong Jiang1, Liguo Zhao1, Yingdong Song1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012701

    Abstract Thermo-mechanical fatigue (TMF), as the main failure mode of hot components of an aeroengine, are increasingly investigated recently [1,2]. TMF crack growth is studied in a nickel-based powder metallurgy (PM) superalloy subjected to in-phase (IP) and out-of-phase (OP), as well as isothermal fatigue (IF) at peak temperature. The crack growth rate and path are evaluated for both coarse grain (CG) and fine grain (FG) structure, especially the effects of phase angle and polycrystalline microstructure. The results show that the TMF crack propagation is mainly transgranular in OP condition; while in IP condition, crack propagates intergranularly… More >

  • Open Access

    PROCEEDINGS

    The Biomimetic Turing Machine

    Jiahao Li1, Yinbo Zhu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011955

    Abstract Movements actuated by the moisture in plant tissues are prevalent in nature. Different microstructures of plants determine the various patterns of moisture-actuated movements. For instance, the graded lignin fraction of Selaginella lepidophylla leads to the a graded curvature morphology, while the fiber orientation angles determine the helical chirality of chiral seed pods. Inspired by these two types of plant microstructures, a theoretical framework for a biomimetic Turing machine is constructed. Similar to the Turing machine introduced by Alan Turing in 1936, the biomimetic Turing machine has a ribbon-like bilayer structure composed of numerous units, whose More >

  • Open Access

    PROCEEDINGS

    Influence of Synchronous-Hammer-Forging Force on the Microstructure and Properties of Laser Directed Energy Deposition 316L Components

    Yunfei Li1, Dongjiang Wu1, Fangyong Niu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012365

    Abstract The plastic deformation assisted method plays a positive role in regulating the microstructure and mechanical properties of metal components in additive manufacturing. In this work, the effect of hammer forging force on the microstructure and mechanical properties of 316L stainless steel additive components were investigated by using synchronous-hammer-forging-assisted laser directed energy deposition method. The results show that when the hammer forging force is greater than 40 N, the grain refinement effect is obvious, the grain size decreases by more than 60 %, and the maximum strength of the polar diagram decreases by more than 75 More >

  • Open Access

    PROCEEDINGS

    Refined Microstructures and Enhanced Strength of In-Situ TiBw/Ti-6.5Al-2.5Zr-1Mo-1V Composites by Selective Laser Melting

    Qi An1,*, Lihua Cui1, Lujun Huang1, Lin Geng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011973

    Abstract Ti-6.5Al-2.5Zr-1Mo-1V alloy is a near α titanium alloy, which has been widely used in aerospace fields due to its low density, high specific strength, good corrosion resistance and high-temperature durability. To further improve the strength and high-temperature durability of Ti-6.5Al-2.5Zr-1Mo-1V complex components, the spherical Ti-6.5Al-2.5Zr-1Mo-1V alloy powder with a particle size of 15~53 μm and TiB2 powder with a particle size of 0.5~1 μm were used to fabricate in-situ TiBw reinforced Ti-6.5Al-2.5Zr-1Mo-1V composites through low energy ball milling and selective laser melting (SLM). The results show that the TiB whiskers are uniformly distributed in the More >

  • Open Access

    PROCEEDINGS

    Hot Corrosion Caused Damage to the Ni-Based Single Crystal Superalloy in the Presence of NaCl at 760℃

    Xinmei Wang1,*, Peiyan Wang1, Weizhu Yang1, Bin Zhao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.010965

    Abstract Ni-based superalloys are the main material for the high pressure turbine blades of modern gas turbine engines [1]. High temperature corrosion of the blade, also called hot corrosion, is inevitable due to the working environment which directly affects the performance and life of the engine [2]. The working environment is harsher if the turbine engine is used in the sea environment. The salt fog of high humidity in the sea results in the chloride of NaCl and KCl. Coupled hot corrosion and high temperature oxidation increase the decay of the blade performances. Therefore, it is… More >

  • Open Access

    PROCEEDINGS

    Recycling of Spent CuCrZr Powder by Laser Powder Bed Fusion: Microstructure Evolution and Properties

    Lizheng Zhang1,2, Jimin Chen1,2,*, Yong Zeng1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011127

    Abstract In laser powder bed fusion (LPBF), the unmelted powder recovered from the powder bed is degraded due to particle-laser interaction during continuous processing. The sensitivity of LPBF performance and molding quality to powder properties, waste powder is usually discarded after several molding cycles, which increases the cost of raw materials. At the same time, the low laser absorption rate and high thermal conductivity of copper and copper alloys inhibit the complete melting of copper powder prepared by LPBF. Therefore, it is challenging to fabricate copper alloy components with full high density and high conductivity through… More >

  • Open Access

    ARTICLE

    Research on the Microstructure Construction Technology of Fully Degraded Polymer Vascular Stent Based on Electric Field Driven 3D Printing

    Yanpu Chao1,*, Fulai Cao1, Hao Yi2,3,*, Shuai Lu1, Yaohui Li1, Hui Cen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2489-2508, 2024, DOI:10.32604/fdmp.2024.051962 - 28 October 2024

    Abstract The so-called fourth-generation biodegradable vascular stent has become a research hotspot in the field of bio-engineering because of its good degradation ability and drug-loading characteristics. However, the preparation of polymer-degraded vascular stents is affected by known problem such as poor process flexibility, low forming accuracy, large diameter wall thickness, limited complex pore structure, weak mechanical properties of radial support and high process cost. In this study, a deposition technique based on a high-voltage electric-field-driven continuous rotating jet is proposed to fabricate fully degraded polymer vascular stents. The experimental results show that, due to the rotation… More > Graphic Abstract

    Research on the Microstructure Construction Technology of Fully Degraded Polymer Vascular Stent Based on Electric Field Driven 3D Printing

  • Open Access

    PROCEEDINGS

    The Simulation of Microstructures and Mechanical Properties in Wire Arc Additive Manufacturing

    Zhao Zhang1,*, Xiang Gao1, Yifei Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012115

    Abstract Wire arc additive manufacturing (WAAM) reveals its high efficiency for the fabrications in comparison with laser additive manufacturing. To reveal the relationship between arc settings and the microstructural evolutions, phase field model and Monte Carlo model are established for the simulation of the microstructural evolutions and dislocation dynamics model is established for the simulation of the anisotropic properties in WAAM. Numerical results are compared with Experiments to validate the proposed models. The length/width ratio of the formed grains in solidification becomes smaller when the scanning speed is decreased or the input powder is increased. The… More >

  • Open Access

    PROCEEDINGS

    3D Printing of Overhanging Microstructures for Tunable Liquid Wettability

    Xiaojiang Liu1,*, Zhongze Gu1, Kun Zhou2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011320

    Abstract Surfaces with overhanging microstructures play an essential role in surface wettability. Typically, surfaces with tightly-distributed multiply symmetric re-entrant microstructures enable the liquid suspension toward water, oil, and even n-perfluorooctane, whose surface tension is as low as 12.0 mN/m [1-4]. In contrast, surfaces with asymmetric re-entrant microstructures are favorable for unidirectional liquid spreading, where the liquids exhibit a small contact angle on the surfaces [5]. These fantastic wettability behaviors can be attributed to three-dimensional (3D) features of the overhanging microstructures, where the edge effect and Laplace pressure difference are generated on the overhanging microstructures. Based on… More >

  • Open Access

    PROCEEDINGS

    Micro-and Meso-Structures of Ti-6Al-4V Formed by SLM Process and Its Formation Mechanism

    Lixiang Dang1, Yanwen Zeng1, Wei Duan1,*, Yan Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012173

    Abstract In order to regulate the multi-scale structure of Ti-6Al-4V formed by the SLM (selective laser melting) process, this study uses the method of combining numerical simulations with experiments to investigate the effects of SLM process parameters on the phase composition, micro- and meso-structures, and their distribution of Ti-6Al-4V. The study shows that the SLM-formed Ti-6Al-4V is mainly composed of α/α' phases. Horizontally, the specimens at a 0° phase angle mainly show a striped pattern, while the specimens at 67° and 90° phase angles will show a tessellated pattern. Vertically, the specimens at 0°, 67°, and More >

Displaying 11-20 on page 2 of 132. Per Page