Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (102)
  • Open Access

    PROCEEDINGS

    High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization, Microstructure Analysis and Modelisation

    Daniel Varadaradjou1,*, Hocine Kebir1, Jérôme Mespoulet2, David Tingaud3, Salima Bouvier1, Paul Deconick2, Kei Ameyama4, Guy Dirras3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-3, 2022, DOI:10.32604/icces.2022.08673

    Abstract The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly with improved mechanical properties as required for structural materials [1]. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell”, respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS),… More >

  • Open Access

    ARTICLE

    Mechanical Properties and Evolution of Microstructure of Cement Stabilized Loess

    Kangze Yuan1, Kui Liu1,2,*, Guoyang Yi3, Bowen Yang2

    Journal of Renewable Materials, Vol.10, No.12, pp. 3611-3627, 2022, DOI:10.32604/jrm.2022.022458

    Abstract Cement Stabilized Loess (CSL) sample has a long history as a method of improving building foundations. In this paper, the main physical (specific gravity, consistency limit, optimum moisture content, and maximum dry density) and mechanical properties (Unconfined Compressive Strength (UCS) and shear strength parameters) of CSL samples with different cement content were investigated, and the change reasons were explored by mean of SEM test. Meanwhile, quantitative analysis software Image-Pro Plus (IPP) 6.0 was used to characterize the microstructural evolution of pores in compacted loess and CSL sample. As the cement content increased, the specific gravity and optimum water content in… More > Graphic Abstract

    Mechanical Properties and Evolution of Microstructure of Cement Stabilized Loess

  • Open Access

    ARTICLE

    Utilization of Dredged River Sediment in Preparing Autoclaved Aerated Concrete Blocks

    Kai Zhang1,2, Qunshan Wei1,2,*, Shuai Jiang3, Zhemin Shen4, Yanxia Zhang1,2, Rui Tang1,2, Aiwu Yang1,2, Christopher W. K. Chow5

    Journal of Renewable Materials, Vol.10, No.11, pp. 2989-3008, 2022, DOI:10.32604/jrm.2022.019821

    Abstract In this study, the dredged river sediment, soft texture and fine particles, is mixed with other materials and transformed into eco-friendly autoclaved aerated concrete (hereinafter referred to as AAC) blocks. The results indicated the bricks produced under the conditions of 30%–34% dredged river sediment, 24% cement, 10% quick lime, 30% fly ash, 2% gypsum and 0.09% aluminum powder with 0.5 water to material ratio, 2.2 MPa autoclave pressure and 6 h autoclave time, the average compressive strength of 4.5 MPa and average dry density of 716.56 kg/m³ were obtained, the two parameters (strength & density) both met the requirement of… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of a Novel Bamboo Shaving Geopolymer Composite

    Jiayu Zhang, Zhenyang Li, Xinli Zhang*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2871-2881, 2022, DOI:10.32604/jrm.2022.019373

    Abstract Geopolymers are inorganic aluminosilicate materials, which have been a great research interest as a material for sustainable development. However, they possess relatively low toughness properties similar to brittle solids. The limitation may be altered by fiber reinforcement to improve their strength and toughness. This research describes the synthesis of bamboo shaving (BS) reinforced geopolymer composites and the characterization of their mechanical properties. The effect of BS content (0–2 wt. %) on the physical and mechanical properties and microstructure of metakaolin based geopolymer paste were investigated. The workability, setting time, bulk density, apparent porosity, thermal conductivity, compressive strength, flexural strength, scanning… More >

  • Open Access

    ARTICLE

    Characterization of Mechanical Properties of Waste Slurry Modified by Recycled Sand and Cement

    Beifeng Lv, Na Li*, Haibo Kang, Yanting Wu, Ben Li, Wei Wang

    Journal of Renewable Materials, Vol.10, No.10, pp. 2669-2683, 2022, DOI:10.32604/jrm.2022.019418

    Abstract In order to study the modification effect of recycled sand on cement reinforced waste slurry (CWS), triaxial test, scanning electron microscope test and X-ray diffraction test were carried out. The mechanical test of recycled sand and cement reinforced waste slurry (RCWS) shows that the deviatoric stress–strain curve of RCWS samples changes from hardening type to softening type with the increase of recycled sand content; the peak stress increases with the increase of recycled sand content; recycled sand can enhance the shear strength of CWS by increasing both cohesion and internal friction angle. The microscopic test shows that recycled sand can… More >

  • Open Access

    ARTICLE

    Strength Performance and Microstructure Characteristic of Naturally-Bonded Fiberboard Composite from Malaysian Bamboo (Bambusa vulgaris)

    Shahril Anuar Bahari1, Mohd Nazarudin Zakaria1, Syaiful Osman1, Falah Abu1, Mohamad Jani Saad2, Reza Hosseinpourpia3,*

    Journal of Renewable Materials, Vol.10, No.10, pp. 2581-2591, 2022, DOI:10.32604/jrm.2022.021313

    Abstract This study investigated the mechanical properties and microstructural characteristics of fiberboard composite produced by naturally-bonded Malaysian bamboo fiber (Bambusa vulgaris). The components that obtained through soda pulping of bamboo culms such as fiber and black liquor, were used for the preparation of high-density fibreboard composite at two target densities of 850 and 950 kg/m3. The bamboo fiberboard composite (BFC) were then produced at 200°C and two pressing parameters of 125 and 175 s/mm. The mechanical properties, e.g., flexural strength and internal bonding (IB) of BFC samples were evaluated according to BS EN 310: 1993 and BS EN 319: 1993, respectively. It was… More > Graphic Abstract

    Strength Performance and Microstructure Characteristic of Naturally-Bonded Fiberboard Composite from Malaysian Bamboo (<i>Bambusa vulgaris</i>)

  • Open Access

    ARTICLE

    Effect of Recycled Mixed Powder on the Mechanical Properties and Microstructure of Concrete

    Chao Liu1,2,*, Huawei Liu2,*, Jian Wu1

    Journal of Renewable Materials, Vol.10, No.5, pp. 1397-1414, 2022, DOI:10.32604/jrm.2022.018386

    Abstract In this paper, recycled bricks and recycled concrete were applied to prepare eco-friendly recycled mixed powder (RMP) cementitious material, as a supplementary to replace conventional cement for improve the recycling of construction and demolition waste. Based on the effect of cementitious materials on the hydration of silicate cement, the effects of RMP on the workability, mechanical properties and microstructure of recycled mixed powder concrete (RMPC) with the different replacement ratios and the 8:4 and 6:4 mixing ratio of recycled brick powder (RBP) and recycled concrete powder (RCP) were investigated. The results showed that the fluidity of the mix decreased with… More >

  • Open Access

    ARTICLE

    Analysis of the Microstructure and Macroscopic Fluid-Dynamics Behavior of Soft Soil after Seepage Consolidation

    Fang Jin*, Dong Zhou, Liying Zhu

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 285-302, 2022, DOI:10.32604/fdmp.2022.017593

    Abstract The purpose is to study the microstructure and macroscopic fluid-dynamic behavior of soft soil after it has been subjected to a seepage consolidation procedure. First, the microscopic pore structure of soft clay is quantitatively studied by a scanning electron microscope technique. Second, the average contact area rate of soil particles is obtained employing statistical analysis applied to microscopic images of soft soil, and the macroscopic porosity of soft clay is determined through an indoor geotechnical test. Finally, mathematical relationships are introduced by fitting the results of the test. The results show that the unmodified empirical equation for the permeability coefficient… More >

  • Open Access

    ARTICLE

    Mechanical Properties and Microcosmic Properties of Self-Compacting Concrete Modified by Compound Admixtures

    Song Yang1, Bing Qi1, Zubin Ai1, Zhensheng Cao1, Shiqin He2,*, Lijun Li3

    Journal of Renewable Materials, Vol.10, No.4, pp. 897-908, 2022, DOI:10.32604/jrm.2022.016653

    Abstract It has become a research hotspot to explore raw material substitutes of concrete. It is important to research the mechanical properties of self-compacting concrete (SCC) with slag powder (SP) and rubber particle (RP) replacing cement and coarse aggregate, respectively. 12 kinds of composite modified self-compacting concrete (CMSCC) specimens were prepared by using 10%, 20% and 30% SP and 30%, 40%, 50% and 60% RP. The rheological properties, mechanical properties and microstructure of the CMSCC were investigated. Results indicate that the workability, compressive strength, splitting tensile strength and flexural strength of CMSCC prepared by 20% SP and less than 40% RP… More >

  • Open Access

    ARTICLE

    Drag Reduction Characteristics of Microstructure Inspired by the Cross Section of Barchan Dunes under High Speed Flow Condition

    Jiawei Jiang, Yizhou Shen*, Jie Tao*, Zhenfeng Jia, Xinyu Xie, Chaojiao Zeng

    Journal of Renewable Materials, Vol.10, No.3, pp. 781-797, 2022, DOI:10.32604/jrm.2022.017230

    Abstract A new type of microstructure inspired by the cross section of barchan dunes was proposed to reduce windage, which was considered as a passive drag reduction technology in aerospace manufacturing field. Computational fluid dynamics method was carried out to discuss the effect of the microstructure on the skin friction reduction under high velocity flow condition. Different microstructure heights were employed to survey the reduction of drag. The results illustrated that the appearance of microstructure led to a generation of pressure drag in non-smooth model (with microstructures inspired by cross section of barchan dune) in contrast to smooth model. However, the… More > Graphic Abstract

    Drag Reduction Characteristics of Microstructure Inspired by the Cross Section of Barchan Dunes under High Speed Flow Condition

Displaying 31-40 on page 4 of 102. Per Page