Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (128)
  • Open Access

    ARTICLE

    Production and Characterization of a Composite Based on Plaster and Juncus Maritimus Plant Fibers

    Mina Amazal1,*, Soumia Mounir1,2, Asma Souidi1, Malika Atigui1, Slimane Oubeddou1, Youssef Maaloufa1,2, Ahmed Aharoune1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2059-2076, 2024, DOI:10.32604/fdmp.2024.050613 - 23 August 2024

    Abstract Nowadays, materials with a limited impact on the environment are required in the construction sector. Considering the interesting properties of natural elements such as natural fibers, it seems advantageous to use them to reinforce materials while protecting the environment and guaranteeing economic gain. Along these lines, this research was devoted to studying the effect of untreated natural fibers extracted from the Juncus maritimus plant (from Southern Morocco) on plaster. First, the effect of the percentage of added fibers on the fluidity of the plaster was evaluated by means of the Marsh’s cone method, that is,… More >

  • Open Access

    ARTICLE

    A Hermitian C Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates

    Chih-Ping Wu*, Ruei-Syuan Chang

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 917-949, 2024, DOI:10.32604/cmes.2024.052307 - 20 August 2024

    Abstract This work develops a Hermitian C differential reproducing kernel interpolation meshless (DRKIM) method within the consistent couple stress theory (CCST) framework to study the three-dimensional (3D) microstructure-dependent static flexural behavior of a functionally graded (FG) microplate subjected to mechanical loads and placed under full simple supports. In the formulation, we select the transverse stress and displacement components and their first- and second-order derivatives as primary variables. Then, we set up the differential reproducing conditions (DRCs) to obtain the shape functions of the Hermitian C differential reproducing kernel (DRK) interpolant’s derivatives without using direct differentiation. The interpolant’s… More >

  • Open Access

    ARTICLE

    Microstructure and Hot Tearing Sensitivity Simulation and Parameters Optimization for the Centrifugal Casting of Al-Cu Alloy

    Xueli He1,, Shengkun Lv1,, Ruifeng Dou1,*, Yanying Zhang1, Junsheng Wang2, Xunliang Liu1, Zhi Wen1

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2873-2895, 2024, DOI:10.32604/cmc.2024.052571 - 15 August 2024

    Abstract Four typical theories on the formation of thermal tears: strength, liquid film, intergranular bridging, and solidification shrinkage compensation theories. From these theories, a number of criteria have been derived for predicting the formation of thermal cracks, such as the stress-based Niyama, Clyne, and RDG (Rapaz-Dreiser-Grimaud) criteria. In this paper, a mathematical model of horizontal centrifugal casting was established, and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by… More >

  • Open Access

    ARTICLE

    Influence of Polyaluminum Chloride Residue on the Strength and Microstructure of Cement-Based Materials

    Ping Xu1,*, Zhiwei Zhang1, Zhenguo Hou2,3, Mankui Zheng1, Jin Tong1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1299-1312, 2024, DOI:10.32604/fdmp.2023.046183 - 27 June 2024

    Abstract In this paper, cement and dechlorinated Polyaluminum Chloride Residue (PACR) have been used to prepare a net slurry and mortar specimens. Two hydration activity indicators have been used to quantitatively analyze the dechlorinated PACR hydration activity. In particular, the effect of dechlorinated PACR content on the compressive strength of mortar has been assessed by means of compressive strength tests. Moreover, X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been employed to observe the microstructure of the considered hydration products. The following results have been obtained. The 28th day activity index of the dechlorinated PACR… More >

  • Open Access

    ARTICLE

    Multiscale Simulation of Microstructure Evolution during Preparation and Service Processes of Physical Vapor Deposited c-TiAlN Coatings

    Yehao Long, Jing Zhong*, Tongdi Zhang, Li Chen, Lijun Zhang*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3435-3453, 2024, DOI:10.32604/cmc.2024.051629 - 20 June 2024

    Abstract Physical Vapor Deposited (PVD) TiAlN coatings are extensively utilized as protective layers for cutting tools, renowned for their excellent comprehensive performance. To optimize quality control of TiAlN coatings for cutting tools, a multi-scale simulation approach is proposed that encompasses the microstructure evolution of coatings considering the entire preparation and service lifecycle of PVD TiAlN coatings. This scheme employs phase-field simulation to capture the essential microstructure of the PVD-prepared TiAlN coatings. Moreover, cutting simulation is used to determine the service temperature experienced during cutting processes at varying rates. Cahn-Hilliard modeling is finally utilized to consume the More >

  • Open Access

    ARTICLE

    Influence of Ultra Fine Glass Powder on the Properties and Microstructure of Mortars

    Wei Chen*, Dingdan Liu, Yue Liang

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 915-938, 2024, DOI:10.32604/fdmp.2024.046335 - 07 June 2024

    Abstract This study focuses on the effect of ultrafine waste glass powder on cement strength, gas permeability and pore structure. Varying contents were considered, with particle sizes ranging from 2 to 20 μm. Moreover, alkali activation was considered to ameliorate the reactivity and cementitious properties, which were assessed by using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and specific surface area pore size distribution analysis. According to the results, without the addition of alkali activators, the performance of glass powder mortar decreases as the amount of glass powder increases, affecting various aspects such as strength… More >

  • Open Access

    ARTICLE

    MIDNet: Deblurring Network for Material Microstructure Images

    Jiaxiang Wang1, Zhengyi Li1, Peng Shi1, Hongying Yu2, Dongbai Sun1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1187-1204, 2024, DOI:10.32604/cmc.2024.046929 - 25 April 2024

    Abstract Scanning electron microscopy (SEM) is a crucial tool in the field of materials science, providing valuable insights into the microstructural characteristics of materials. Unfortunately, SEM images often suffer from blurriness caused by improper hardware calibration or imaging automation errors, which present challenges in analyzing and interpreting material characteristics. Consequently, rectifying the blurring of these images assumes paramount significance to enable subsequent analysis. To address this issue, we introduce a Material Images Deblurring Network (MIDNet) built upon the foundation of the Nonlinear Activation Free Network (NAFNet). MIDNet is meticulously tailored to address the blurring in images… More >

  • Open Access

    ARTICLE

    An Investigation into the Compressive Strength, Permeability and Microstructure of Quartzite-Rock-Sand Mortar

    Wei Chen*, Wuwen Liu, Yue Liang

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 859-872, 2024, DOI:10.32604/fdmp.2023.029310 - 28 March 2024

    Abstract River sand is an essential component used as a fine aggregate in mortar and concrete. Due to unrestrained exploitation, river sand resources are gradually being exhausted. This requires alternative solutions. This study deals with the properties of cement mortar containing different levels of manufactured sand (MS) based on quartzite, used to replace river sand. The river sand was replaced at 20%, 40%, 60% and 80% with MS (by weight or volume). The mechanical properties, transfer properties, and microstructure were examined and compared to a control group to study the impact of the replacement level. The More >

  • Open Access

    ARTICLE

    Topology Optimization of Metamaterial Microstructures for Negative Poisson’s Ratio under Large Deformation Using a Gradient-Free Method

    Weida Wu, Yiqiang Wang, Zhonghao Gao, Pai Liu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2001-2026, 2024, DOI:10.32604/cmes.2023.046670 - 29 January 2024

    Abstract Negative Poisson’s ratio (NPR) metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption. However, when subjected to significant stretching, NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance. To address this issue, this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism. A representative periodic unit cell is modeled considering geometry nonlinearity, and its topology is designed using a gradient-free method. The unit cell microstructural topologies are described with the… More >

  • Open Access

    ARTICLE

    Finite Element Simulations on Failure Behaviors of Granular Materials with Microstructures Using a Micromechanics-Based Cosserat Elastoplastic Model

    Chenxi Xiu1,2,*, Xihua Chu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2305-2338, 2024, DOI:10.32604/cmes.2023.030194 - 15 December 2023

    Abstract This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials. By utilizing this model, the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information. The microstructures under consideration can be classified into three categories: a medium-dense microstructure, a dense microstructure consisting of one-sized particles, and a dense microstructure consisting of two-sized particles. Subsequently, the Cosserat elastoplastic model, along with its finite element formulation, is derived using the extended Drucker-Prager yield criteria. To investigate failure behaviors, numerical simulations of granular materials with different microstructures are conducted using… More >

Displaying 21-30 on page 3 of 128. Per Page