Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (105)
  • Open Access

    PROCEEDINGS

    Interfacial Delamination in High-Temperature Coatings with Segmented Microstructures

    Biao Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09818

    Abstract High-temperature coatings are extensively used in aircraft engines and industrial gas turbines to protect hot-section components from harsh operating environments [1]. Representative high-temperature coatings include thermal barrier coatings and environmental barrier coatings, which are applied to substrates made of superalloy and ceramic matrix composites, respectively. The durability of the coatings is of significant importance for the structural integrity of the components [2-4]. A segmented microstructure was widely used to improve the coatings' durability. A network of through-thickness vertical cracks is introduced into the outer layer of the coatings, which increases the compliance of the coatings… More >

  • Open Access

    ARTICLE

    Microstructural Dependence of Friction and Wear Behavior in Biological Shells

    Xin Wang1,3, Ying Yan1,3, Hongmei Ji1,3,*, Xiaowu Li1,2,*

    Journal of Renewable Materials, Vol.11, No.8, pp. 3297-3308, 2023, DOI:10.32604/jrm.2023.027066

    Abstract As an essential renewable mineral resource, mollusk shells can be used as handicrafts, building materials, adsorbents, etc. However, there are few reports on the wear resistance of their structures. The Vicker’s hardness and friction, and wear resistance of different microstructures in mollusk shells were comparatively studied in the present work. The hardness of prismatic structures is lower than that of cross-lamellar and nacreous structures. However, the experimental results of sliding tests indicate that the prismatic structure exhibits the best anti-wear ability compared with foliated, crossed-lamellar, and nacreous structures. The anti-wear and hardness do not present More > Graphic Abstract

    Microstructural Dependence of Friction and Wear Behavior in Biological Shells

  • Open Access

    ARTICLE

    Research of Microstructure, Phase, and Mechanical Properties of Aluminum-Dross-Based Porous Ceramics

    Liang Yu1,2,3, Yuan Liu1,2,3, Xiuling Cao4,*, Yulong Yan1,2,3, Chen Zhang1,2,3, Yanli Jiang1,2,3,*

    Journal of Renewable Materials, Vol.11, No.7, pp. 3057-3072, 2023, DOI:10.32604/jrm.2023.025732

    Abstract In this study, the effect of sintering temperature and the addition of kaolin, a sintering agent, on the microscopic, phase, and mechanical properties of ceramics were investigated using secondary aluminum dross (SAD) as the main component in the manufacturing of ceramics. The basic phases of the ceramics were Al2O3, MgAl2O4, NaAl11O17, and SiO2 without the addition of kaolin. The diffraction peaks of MgAl2O4, NaAl11O17, and SiO2 kept decreasing while those of Al2O3 kept increasing with an increase in temperature. In addition, the increase in temperature promoted the growth of the grains. The grains were uniform in size and regular… More > Graphic Abstract

    Research of Microstructure, Phase, and Mechanical Properties of Aluminum-Dross-Based Porous Ceramics

  • Open Access

    ARTICLE

    Influence of Erosion Induced by NaCl on the Mechanical Performances of Alkali-Activated Mineral Admixtures

    Jing Yu1, Jie Ren2, Guangming Shen3, Weixiang Sun2, Hui Wang4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2385-2398, 2023, DOI:10.32604/fdmp.2023.027877

    Abstract In this paper, the influence of NaCl freeze-thaw (F-T) cycles and dry-wet (D-W) alternations on the flexural, compressive and bonding strengths of alkali-activated fly ash (FA) and a blast furnace slag powder (BFS) is investigated. The considered NaCl concentration is 3%. The effect of polypropylene fibers on the mechanical strengths is also examined. Scanning electron microscopy (SEM), thermogravimetry (TG) and X-ray diffraction (XRD) are selected to discern the mechanisms underpinning the NaCl-induced erosion. The obtained results indicate that the best results in terms of material resistance are obtained with admixtures containing 60% BFS and 40%… More >

  • Open Access

    ARTICLE

    Analysis of a Composite Admixture Based on Ready-Mixed Concrete Waste Residuals

    Jinfa Jiang1, Long Xiong2, Ming Bao2, Zihan Zhou2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 1983-1995, 2023, DOI:10.32604/fdmp.2023.026023

    Abstract Reasonable treatment and utilization of waste residuals discharged during the production of ready-mixed concrete is an important problem in the cement industry. In this study, a composite admixture was prepared by using ready-mixed concrete waste residuals, furnace slag, and water granulated slag. The grinding characteristics of such material were investigated. Moreover, the effect of such admixture on cement hydration and pore structure was analyzed by X-ray diffraction, thermogravimetric-differential scanning calorimetry, scanning electron microcopy and mercury intrusion porosimetry. As shown by the results: The grinding characteristics of the waste residuals can be improved significantly by mixing More > Graphic Abstract

    Analysis of a Composite Admixture Based on Ready-Mixed Concrete Waste Residuals

  • Open Access

    ARTICLE

    Durability of Green Concrete in Severe Environment

    Yonggan Yang1,2,3,4, Zihao Kang1, Binggen Zhan1,3,*, Peng Gao1,3,*, Qijun Yu1, Yanlai Xiong4, Jingfeng Wang1,3, Yunsheng Zhang5

    Journal of Renewable Materials, Vol.11, No.4, pp. 1895-1910, 2023, DOI:10.32604/jrm.2023.025059

    Abstract In this paper, the effects of different mineral admixtures and sulfate solution types on the appearance, mass change rate, relative dynamic elastic modulus, and corrosion resistance coefficient of concrete were systematically studied. X-ray Diffraction (XRD), Mercury Intrusion Porosimetry (MIP), Scanning Electron Microscopy (SEM), and X-ray Computed Tomography (X-CT) were used to explore and analyze the changes in the microstructure and the corrosion products of concrete in the sulfate solution. The results show that the existence of magnesium ions accelerates concrete deterioration. There is a critical dosage of fly ash for magnesium sulfate resistance of concrete.… More > Graphic Abstract

    Durability of Green Concrete in Severe Environment

  • Open Access

    ARTICLE

    Early-Age Properties Development of Recycled Glass Powder Blended Cement Paste: Strengths, Shrinkage, Nanoscale Characteristics, and Environmental Analysis

    Zhihai He1,2, Menglu Shen1, Jinyan Shi3,*, Jingyu Chang1, Víctor Revilla-Cuesta4, Osman Gencel5

    Journal of Renewable Materials, Vol.11, No.4, pp. 1835-1852, 2023, DOI:10.32604/jrm.2023.024887

    Abstract Recycling solid waste in cement-based materials cannot only ease its load on the natural environment but also reduce the carbon emissions of building materials. This study aims to investigate the effect of recycled glass powder (RGP) on the early-age mechanical properties and autogenous shrinkage of cement pastes, where cement is replaced by 10%, 20% and 30% of RGP. In addition, the microstructure and nano-mechanical properties of cement paste with different RGP content and water to binder (W/B) ratio were also evaluated using SEM, MIP and nanoindentation techniques. The results indicate that the early-age autogenous shrinkage… More > Graphic Abstract

    Early-Age Properties Development of Recycled Glass Powder Blended Cement Paste: Strengths, Shrinkage, Nanoscale Characteristics, and Environmental Analysis

  • Open Access

    ARTICLE

    Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials

    Mengqi Cong*, Yang Zhang, Yunlong Zhang, Xiao Liu, Yalin Lu, Xiaoping Li

    Journal of Renewable Materials, Vol.11, No.4, pp. 1977-1989, 2023, DOI:10.32604/jrm.2023.023849

    Abstract Magnesium alloy has been considered as one of the third-generation biomaterials for the regeneration and support of functional bone tissue. As a regeneration implant material with great potential applications, in-situ Mg2Si phase reinforced Mg-6Zn cast alloy was comprehensively studied and expected to possess excellent mechanical properties via the refining and modifying of Mg2Si reinforcements. The present study demonstrates that the primary and eutectic Mg2Si phase can be greatly modified by the yttrium (Y) addition. The size of the primary Mg2Si phases can be reduced to ~20 μm with an addition of 0.5 wt.% Y. This phenomenon is… More > Graphic Abstract

    Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials

  • Open Access

    ARTICLE

    Effect of Dry-Wet Cycles on the Transport and Mechanical Properties of Cement Mortar Subjected to Sulfate Attack

    Wei Chen1,*, Weijie Shan1, Yue Liang1, Frederic Skoczylas2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 679-696, 2023, DOI:10.32604/fdmp.2022.021249

    Abstract This study deals with the analysis of the detrimental effects of a “sulfate attack” on cement mortar for different dry-wet cycles. The mass loss, tensile strength, and gas permeability coefficient were determined and analyzed under different exposure conditions. At the same time, nitrogen adsorption (NAD), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques were used to analyze the corresponding variations in the microstructure and the corrosion products. The results show that certain properties of the cement mortar evolve differently according to the durations of the dry-wet cycles and that some damage is caused to More >

  • Open Access

    ARTICLE

    Analysis of the Microstructure of a Failed Cement Sheath Subjected to Complex Temperature and Pressure Conditions

    Zhiqiang Wu1,2, Yi Wu2, Renjun Xie2, Jin Yang1, Shujie Liu3, Qiao Deng4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 399-406, 2023, DOI:10.32604/fdmp.2022.020402

    Abstract One of the main obstacles hindering the exploitation of high-temperature and high-pressure oil and gas is the sealing integrity of the cement sheath. Analyzing the microstructure of the cement sheath is therefore an important task. In this study, the microstructure of the cement sheath is determined using a CT scanner under different temperature and pressure conditions. The results suggest that the major cause of micro-cracks in the cement is the increase in the casing pressure. When the micro-cracks accumulate to a certain extent, the overall structure of the cement sheath is weakened, resulting in gas More >

Displaying 21-30 on page 3 of 105. Per Page