Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (384)
  • Open Access

    PROCEEDINGS

    Fragile Points Method for Modeling Complex Structural Failure

    Mingjing Li1,*, Leiting Dong1, Satya N. Atluri2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09689

    Abstract The Fragile Points Method (FPM) is a discontinuous meshless method based on the Galerkin weak form [1]. In the FPM, the problem domain is discretized by spatial points and subdomains, and the displacement trial function of each subdomain is derived based on the points within the support domain. For this reason, the FPM doesn’t suffer from the mesh distortion and is suitable to model complex structural deformations. Furthermore, similar to the discontinuous Galerkin finite element method, the displacement trial functions used in the FPM is piece-wise continuous, and the numerical flux is introduced across each interior interface to guarantee the… More >

  • Open Access

    PROCEEDINGS

    Key Transport Mechanisms in Supercritical CO2 Based Pilot Micromodels Subjected to Bottom Heat and Mass Diffusion

    Karim Ragui1, Mengshuai Chen1,2, Lin Chen1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010378

    Abstract The ambiguous dynamics associated with heat and mass transfer of invading carbon dioxide in sub-critical and supercritical states, as well as the response of pore-scale resident fluids, play a key role in understanding CO2 capture and storage (CCUS) and the corresponding phase equilibrium mechanisms. To this end, this paper reveals the transport mechanisms of invading supercritical carbon dioxide (sCO2) in polluted micromodels using a variant of Lattice-Boltzmann Color Fluid model and descriptive experimental data. The breakthrough time is evaluated by characterizing the displacement velocity, the capillary to pressuredifference ratio, and the transient heat and mass diffusion at a series of… More >

  • Open Access

    ARTICLE

    A Comparative Performance Analysis of Machine Learning Models for Intrusion Detection Classification

    Adil Hussain1, Amna Khatoon2,*, Ayesha Aslam2, Tariq1, Muhammad Asif Khosa1

    Journal of Cyber Security, Vol.6, pp. 1-23, 2024, DOI:10.32604/jcs.2023.046915

    Abstract The importance of cybersecurity in contemporary society cannot be inflated, given the substantial impact of networks on various aspects of daily life. Traditional cybersecurity measures, such as anti-virus software and firewalls, safeguard networks against potential threats. In network security, using Intrusion Detection Systems (IDSs) is vital for effectively monitoring the various software and hardware components inside a given network. However, they may encounter difficulties when it comes to detecting solitary attacks. Machine Learning (ML) models are implemented in intrusion detection widely because of the high accuracy. The present work aims to assess the performance of machine learning algorithms in the… More >

  • Open Access

    ARTICLE

    Models to Simulate Effective Coverage of Fire Station Based on Real-Time Travel Times

    Sicheng Zhu, Dingli Liu*, Weijun Liu, Ying Li, Tian Zhou

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 483-513, 2024, DOI:10.32604/cmes.2023.044809

    Abstract In recent years, frequent fire disasters have led to enormous damage in China. Effective firefighting rescues can minimize the losses caused by fires. During the rescue processes, the travel time of fire trucks can be severely affected by traffic conditions, changing the effective coverage of fire stations. However, it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions. This paper addresses this issue by combining the traveling time calculation model with the effective coverage simulation model. In addition, it proposes a new index of total effective coverage area (TECA) based on the time-weighted average… More >

  • Open Access

    REVIEW

    Deep Learning for Financial Time Series Prediction: A State-of-the-Art Review of Standalone and Hybrid Models

    Weisi Chen1,*, Walayat Hussain2,*, Francesco Cauteruccio3, Xu Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 187-224, 2024, DOI:10.32604/cmes.2023.031388

    Abstract Financial time series prediction, whether for classification or regression, has been a heated research topic over the last decade. While traditional machine learning algorithms have experienced mediocre results, deep learning has largely contributed to the elevation of the prediction performance. Currently, the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking, making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better, what techniques and components are involved, and how the model can be designed and implemented. This review article provides an overview of techniques, components and… More > Graphic Abstract

    Deep Learning for Financial Time Series Prediction: A State-of-the-Art Review of Standalone and Hybrid Models

  • Open Access

    ARTICLE

    A Novel Predictive Model for Edge Computing Resource Scheduling Based on Deep Neural Network

    Ming Gao1,#, Weiwei Cai1,#, Yizhang Jiang1, Wenjun Hu3, Jian Yao2, Pengjiang Qian1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 259-277, 2024, DOI:10.32604/cmes.2023.029015

    Abstract Currently, applications accessing remote computing resources through cloud data centers is the main mode of operation, but this mode of operation greatly increases communication latency and reduces overall quality of service (QoS) and quality of experience (QoE). Edge computing technology extends cloud service functionality to the edge of the mobile network, closer to the task execution end, and can effectively mitigate the communication latency problem. However, the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management, and the booming development of artificial neural networks provides us with more powerful methods… More >

  • Open Access

    ARTICLE

    An Adaptive DDoS Detection and Classification Method in Blockchain Using an Integrated Multi-Models

    Xiulai Li1,2,3,4, Jieren Cheng1,3,*, Chengchun Ruan1,3, Bin Zhang1,3, Xiangyan Tang1,3, Mengzhe Sun5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3265-3288, 2023, DOI:10.32604/cmc.2023.045588

    Abstract With the rising adoption of blockchain technology due to its decentralized, secure, and transparent features, ensuring its resilience against network threats, especially Distributed Denial of Service (DDoS) attacks, is crucial. This research addresses the vulnerability of blockchain systems to DDoS assaults, which undermine their core decentralized characteristics, posing threats to their security and reliability. We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks. To ensure the robustness and validity of our approach, a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset. Using this, our methodology was applied to detect… More >

  • Open Access

    ARTICLE

    Analyzing the Impact of Blockchain Models for Securing Intelligent Logistics through Unified Computational Techniques

    Mohammed S. Alsaqer1, Majid H. Alsulami2,*, Rami N. Alkhawaji3, Abdulellah A. Alaboudi2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3943-3968, 2023, DOI:10.32604/cmc.2023.042379

    Abstract Blockchain technology has revolutionized conventional trade. The success of blockchain can be attributed to its distributed ledger characteristic, which secures every record inside the ledger using cryptography rules, making it more reliable, secure, and tamper-proof. This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context. Furthermore, it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure. To realize the full potential of the accurate and efficacious use of blockchain in… More >

  • Open Access

    ARTICLE

    Empirical Analysis of Neural Networks-Based Models for Phishing Website Classification Using Diverse Datasets

    Shoaib Khan, Bilal Khan, Saifullah Jan*, Subhan Ullah, Aiman

    Journal of Cyber Security, Vol.5, pp. 47-66, 2023, DOI:10.32604/jcs.2023.045579

    Abstract Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information, a problem that persists despite user awareness. This study addresses the pressing issue of phishing attacks on websites and assesses the performance of three prominent Machine Learning (ML) models—Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM)—utilizing authentic datasets sourced from Kaggle and Mendeley repositories. Extensive experimentation and analysis reveal that the CNN model achieves a better accuracy of 98%. On the other hand, LSTM shows the lowest accuracy of 96%. These findings underscore the potential of ML techniques in… More >

  • Open Access

    ARTICLE

    Fusion of Region Extraction and Cross-Entropy SVM Models for Wheat Rust Diseases Classification

    Deepak Kumar1, Vinay Kukreja1, Ayush Dogra1,*, Bhawna Goyal2, Talal Taha Ali3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2097-2121, 2023, DOI:10.32604/cmc.2023.044287

    Abstract Wheat rust diseases are one of the major types of fungal diseases that cause substantial yield quality losses of 15%–20% every year. The wheat rust diseases are identified either through experienced evaluators or computerassisted techniques. The experienced evaluators take time to identify the disease which is highly laborious and too costly. If wheat rust diseases are predicted at the development stages, then fungicides are sprayed earlier which helps to increase wheat yield quality. To solve the experienced evaluator issues, a combined region extraction and cross-entropy support vector machine (CE-SVM) model is proposed for wheat rust disease identification. In the proposed… More >

Displaying 31-40 on page 4 of 384. Per Page