Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (445)
  • Open Access

    ARTICLE

    Advancing Breast Cancer Molecular Subtyping: A Comparative Study of Convolutional Neural Networks and Vision Transformers on Mammograms

    Chee Chin Lim1,2,*, Hui Wen Tiu1, Qi Wei Oung1,3, Chiew Chea Lau4, Xiao Jian Tan2,5

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070468 - 12 January 2026

    Abstract Breast cancer remains one of the leading causes of cancer mortality world-wide, with accurate molecular subtyping is critical for guiding treatment and improving patient outcomes. Traditional molecular subtyping via immuno-histochemistry (IHC) test is invasive, time-consuming, and may not fully represent tumor heterogeneity. This study proposes a non-invasive approach using digital mammography images and deep learning algorithm for classifying breast cancer molecular subtypes. Four pretrained models, including two Convolutional Neural Networks (MobileNet_V3_Large and VGG-16) and two Vision Transformers (ViT_B_16 and ViT_Base_Patch16_Clip_224) were fine-tuned to classify images into HER2-enriched, Luminal, Normal-like, and Triple Negative subtypes. Hyperparameter tuning,… More >

  • Open Access

    REVIEW

    Branched-Chain Amino Acid Metabolic Reprogramming and Cancer: Molecular Mechanisms, Immune Regulation, and Precision Targeting

    Dongchi Cai1,2,#, Jialin Ji3,#, Chunhui Yang1,*, Hong Cai1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.071152 - 30 December 2025

    Abstract Metabolic reprogramming involving branched-chain amino acids (BCAAs)—leucine, isoleucine, and valine—is increasingly recognized as pivotal in cancer progression, metastasis, and immune modulation. This review comprehensively explores how cancer cells rewire BCAA metabolism to enhance proliferation, survival, and therapy resistance. Tumors manipulate BCAA uptake and catabolism via high expression of transporters like L-type amino acid transporter 1 (LAT1) and enzymes including branched chain amino acid transaminase 1(BCAT1), branched chain amino acid transaminase 2 (BCAT2), branched-chain alpha-keto acid dehydrogenase (BCKDH), and branched chain alpha-keto acid dehydrogenase kinase (BCKDK). These alterations sustain energy production, biosynthesis, redox homeostasis, and oncogenic… More >

  • Open Access

    REVIEW

    Male Breast Cancer: Epidemiology, Diagnosis, Molecular Mechanisms, Therapeutics, and Future Prospective

    Ashok Kumar Sah1,*, Ranjay Kumar Choudhary1,2, Velilyaeva Alie Sabrievna3, Karomatov Inomdzhon Dzhuraevich4, Anass M. Abbas5, Manar G. Shalabi5, Nadeem Ahmad Siddique6, Raji Rubayyi Alshammari7, Navjyot Trivedi8, Rabab H. Elshaikh1

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.068238 - 30 December 2025

    Abstract Male breast cancer (MBC) is rare, representing 0.5%–1% of all breast cancers, but its incidence is increasing due to improved diagnostics and awareness. MBC typically presents in older men, is human epidermal growth factor receptor 2 (HER2)-negative and estrogen receptor (ER)-positive, and lacks routine screening, leading to delayed diagnosis and advanced disease. Major risk factors include hormonal imbalance, radiation exposure, obesity, alcohol use, and Breast Cancer Gene 1 and 2 (BRCA1/2) mutations. Clinically, it may resemble gynecomastia but usually appears as a unilateral, painless mass or nipple discharge. Advances in imaging and liquid biopsy have More >

  • Open Access

    ARTICLE

    Structural and Helix Reversal Defects of Carbon Nanosprings: A Molecular Dynamics Study

    Alexander V. Savin1,2, Elena A. Korznikova3,4, Sergey V. Dmitriev5,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072786 - 09 December 2025

    Abstract Due to their chiral structure, carbon nanosprings possess unique properties that are promising for nanotechnology applications. The structural transformations of carbon nanosprings in the form of spiral macromolecules derived from planar coronene and kekulene molecules (graphene helicoids and spiral nanoribbons) are analyzed using molecular dynamics simulations. The interatomic interactions are described by a force field including valence bonds, bond angles, torsional and dihedral angles, as well as van der Waals interactions. While the tension/compression of such nanosprings has been analyzed in the literature, this study investigates other modes of deformation, including bending and twisting. Depending… More >

  • Open Access

    ARTICLE

    Mechanisms of Pore-Grain Boundary Interactions Influencing Nanoindentation Behavior in Pure Nickel: A Molecular Dynamics Study

    Chen-Xi Hu1, Wu-Gui Jiang1,*, Jin Wang1, Tian-Yu He2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.068655 - 10 November 2025

    Abstract THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics (MD) simulations, with a particular focus on the novel interplay between crystallographic orientation, grain boundary (GB) proximity, and pore characteristics (size/location). This study compares single-crystal nickel models along [100], [110], and [111] orientations with equiaxed polycrystalline models containing 0, 1, and 2.5 nm pores in surface and subsurface configurations. Our results reveal that crystallographic anisotropy manifests as a 24.4% higher elastic modulus and 22.2% greater hardness in [111]-oriented single crystals compared to [100]. Pore-GB synergistic effects are found More >

  • Open Access

    ARTICLE

    Genome-Wide Identification and Functional Characterization of UGT Gene Family in Sorghum bicolor with Insights into SbUGT12’s Role in C4 Photosynthesis

    Wenxiang Zhang1,2, Wenning Cui1, Juan Huang3, Zhangen Lu1, Kuijing Liang1, Lingbao Wang1,2, Shanshan Wei1,2, Liran Shi1, Huifen Li1, Xiaoli Guo1,2,*, Jianhui Ma4,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3893-3912, 2025, DOI:10.32604/phyton.2025.073736 - 29 December 2025

    Abstract UDP-glycosyltransferases (UGTs) play essential roles in plant secondary metabolism and stress responses, yet their composition and functions in Sorghum bicolor, a model C4 plant, remain inadequately characterized. This study identified 196 SbUGT genes distributed across all 10 chromosomes and classified them into 16 subfamilies (A–P) through phylogenetic analysis. Among these, 61.2% were intronless, and 10 conserved motifs, including the UGT-specific PSPG box, were identified. Synteny analysis using MCScanX revealed 12 segmental duplication events and conserved syntenic relationships with other Poaceae species (rice, maize, and barley). Promoter analysis uncovered 125 distinct cis-acting elements, predominantly associated with stress and… More >

  • Open Access

    ARTICLE

    Thin-Film Solar Cell Based on Sb2(Sx,Se1−x)3 Solid Solution Films

    T. M. Razykov1, K. M. Kuchkarov1, R. T. Yuldoshov1, M. P. Pirimmatov1, R. R. Khurramov1, D. Z. Isakov1, M. A. Makhmudov1, A. Matmuratov1, J. G. Bekmirzoyev1, A. N. Olimov2

    Chalcogenide Letters, Vol.22, No.11, pp. 959-964, 2025, DOI:10.15251/CL.2025.2211.959

    Abstract This work presents the results of investigating the photovoltaic characteristics of Sb2(SxSe1−x)3 thin film solar cells manufactured on glass substrates with molybdenum coating using the chemical molecular beam deposition method. Illuminated IV and spectral response measurements on Sb2(SxSe1−x)3 alloy films show that the device with S/(S + Se) = 0.6 delivers the best performance, reaching 6.47% power-conversion efficiency with VOC = 523 mV, JSC = 27.2 mA cm−2 , and a fill factor of 46.71%. More >

  • Open Access

    REVIEW

    Beyond Photomorphogenesis: Multifaceted Roles of BBX Transcription Factors in Plant Stress Responses and Breeding Perspectives

    Qinfu Sun, Junqiang Xing, Wanyu Zhang, Chen Lin*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3349-3370, 2025, DOI:10.32604/phyton.2025.071525 - 01 December 2025

    Abstract Extensive transcriptomic reprogramming is triggered by biotic and abiotic stresses in plants, with coordinated regulation mediated through multiple transcription factor families, such as WRKY, MYB, NAC, and BBX proteins. Among these, B-box (BBX) proteins represent a distinct class of zinc finger transcription factors characterized by the presence of conserved B-box domains. They serve as central regulators in plant photomorphogenesis and developmental processes. Accumulating genetic and biochemical evidence demonstrates that BBX family members orchestrate plant responses to biotic and abiotic stresses through multifaceted molecular mechanisms, including the regulation of reactive oxygen species (ROS) homeostasis, enhancement of… More >

  • Open Access

    ARTICLE

    Genetic Diversity of Tuberose (Polianthes tuberosa L.) Germplasm through Molecular Approaches to Obtain Desirable Plant Materials for Future Breeding Programs

    Vardhelli Soukya1, Soumen Maitra1,*, Nandita Sahana2, Saikat Das3, Rupsanatan Mandal3, Arpita Mandal Khan1, Arindam Das4, Ashok Choudhury5, Prodyut Kumar Paul6, Ahmed Gaber7, Mohammed M. Althaqafi8, Akbar Hossain9,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3493-3508, 2025, DOI:10.32604/phyton.2025.071450 - 01 December 2025

    Abstract The present study investigated the genetic diversity of 24 germplasms of Polianthes tuberosa L. via 16 inter simple sequence repeat (ISSR) marker techniques. The research findings revealed that the ISSR markers presented higher levels of band reproducibility and were more efficient at clustering germplasms. Among the 16 markers examined in this study, 12 had a complete polymorphism rate of 100%. The molecular analysis revealed a PIC ranging from 0.079 to 0.373, with a mean value of 0.30, whereas the range of the marker index was from 0.0001 to 0.409, with an average value of 0.03, and More >

  • Open Access

    REVIEW

    Precision Pharmacology in Pediatric Congenital Heart Disease: Gene Editing and Organoid Models Addressing Developmental Challenges

    Jun He1, Jianli Luo1, Yanling Wang1,*, Dai Zhou1,*, Shuanglin Xiang2,*

    Congenital Heart Disease, Vol.20, No.5, pp. 613-623, 2025, DOI:10.32604/chd.2025.071773 - 30 November 2025

    Abstract Pediatric congenital heart disease (CHD) pharmacotherapy faces three fundamental barriers: developmental pharmacokinetic complexity, anatomic-genetic heterogeneity, and evidence chain gaps. Traditional agents exhibit critical limitations: digoxin’s narrow therapeutic index (0.5–0.9 ng/mL) is exacerbated by ABCB1 mutations (toxicity risk increases 4.1-fold), furosemide efficacy declines by 35% in neonates due to NKCC2 immaturity, and β-blocker responses vary by CYP2D6 polymorphisms (poor metabolizers require 50–75% dose reduction). Novel strategies demonstrate transformative potential—CRISPR editing achieves 81% reversal of BMPR2-associated pulmonary vascular remodeling, metabolically matured cardiac organoids replicate adult myocardial energy metabolism for drug screening, and SGLT2 inhibitors activate triple mechanisms (calcium overload More >

Displaying 1-10 on page 1 of 445. Per Page