Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (379)
  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Real-Time Cheating Behaviour Detection in Online Exams Using Video Captured Analysis

    Dao Phuc Minh Huy1, Gia Nhu Nguyen1, Dac-Nhuong Le2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070948 - 12 January 2026

    Abstract Online examinations have become a dominant assessment mode, increasing concerns over academic integrity. To address the critical challenge of detecting cheating behaviours, this study proposes a hybrid deep learning approach that combines visual detection and temporal behaviour classification. The methodology utilises object detection models—You Only Look Once (YOLOv12), Faster Region-based Convolutional Neural Network (RCNN), and Single Shot Detector (SSD) MobileNet—integrated with classification models such as Convolutional Neural Networks (CNN), Bidirectional Gated Recurrent Unit (Bi-GRU), and CNN-LSTM (Long Short-Term Memory). Two distinct datasets were used: the Online Exam Proctoring (EOP) dataset from Michigan State University and… More >

  • Open Access

    ARTICLE

    Block-Wise Sliding Recursive Wavelet Transform and Its Application in Real-Time Vehicle-Induced Signal Separation

    Jie Li1, Nan An2,3, Youliang Ding2,3,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.072361 - 08 January 2026

    Abstract Vehicle-induced response separation is a crucial issue in structural health monitoring (SHM). This paper proposes a block-wise sliding recursive wavelet transform algorithm to meet the real-time processing requirements of monitoring data. To extend the separation target from a fixed dataset to a continuously updating data stream, a block-wise sliding framework is first developed. This framework is further optimized considering the characteristics of real-time data streams, and its advantage in computational efficiency is theoretically demonstrated. During the decomposition and reconstruction processes, information from neighboring data blocks is fully utilized to reduce algorithmic complexity. In addition, a… More >

  • Open Access

    ARTICLE

    Diffusion-Driven Generation of Synthetic Complex Concrete Crack Images for Segmentation Tasks

    Pengwei Guo1, Xiao Tan2,3,*, Yiming Liu4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071317 - 08 January 2026

    Abstract Crack detection accuracy in computer vision is often constrained by limited annotated datasets. Although Generative Adversarial Networks (GANs) have been applied for data augmentation, they frequently introduce blurs and artifacts. To address this challenge, this study leverages Denoising Diffusion Probabilistic Models (DDPMs) to generate high-quality synthetic crack images, enriching the training set with diverse and structurally consistent samples that enhance the crack segmentation. The proposed framework involves a two-stage pipeline: first, DDPMs are used to synthesize high-fidelity crack images that capture fine structural details. Second, these generated samples are combined with real data to train… More >

  • Open Access

    ARTICLE

    BIM-Based Visualization System for Settlement Warning in Multi-Purpose Utility Tunnels (MUTs)

    Ping Wu1, Jie Zou2, Wangxin Li1,*, Yidong Xu1

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070873 - 08 January 2026

    Abstract The existing 2D settlement monitoring systems for utility tunnels are heavily reliant on manual interpretation of deformation data and empirical prediction models. Consequently, early anomalies (e.g., minor cracks) are often misjudged, and warnings lag by about 24 h without automated spatial localization. This study establishes a technical framework for requirements analysis, architectural design, and data-integration protocols. Revit parametric modelling is used to build a 3D tunnel model with structural elements, pipelines and 18 monitoring points (for displacement and joint width). Custom Revit API code integrated real-time sensor data into the BIM platform via an automated… More >

  • Open Access

    ARTICLE

    Stress Redistribution Patterns in Road-Rail Double-Deck Bridges: Insights from Long-Term Bridge Health Monitoring

    Benyu Wang*, Ke Chen, Bingjian Wang#,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070137 - 08 January 2026

    Abstract To examine stress redistribution phenomena in bridges subjected to varying operational conditions, this study conducts a comprehensive analysis of three years of monitoring data from a 153-m double-deck road–rail steel arch bridge. An initial statistical comparison of sensor data distributions reveals clear temporal variations in stress redistribution patterns. XGBoost (eXtreme Gradient Boosting), a gradient-boosting machine learning (ML) algorithm, was employed not only for predictive modeling but also to uncover the underlying mechanisms of stress evolution. Unlike traditional numerical models that rely on extensive assumptions and idealizations, XGBoost effectively captures nonlinear and time-varying relationships between stress… More >

  • Open Access

    ARTICLE

    FishTracker: An Efficient Multi-Object Tracking Algorithm for Fish Monitoring in a RAS Environment

    Yuqiang Wu1,2, Zhao Ji1, Guanqi You1, Zihan Zhang1, Chaoping Lu3, Huanliang Xu1, Zhaoyu Zhai1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-22, 2026, DOI:10.32604/cmc.2025.070414 - 09 December 2025

    Abstract Understanding fish movement trajectories in aquaculture is essential for practical applications, such as disease warning, feeding optimization, and breeding management. These trajectories reveal key information about the fish’s behavior, health, and environmental adaptability. However, when multi-object tracking (MOT) algorithms are applied to the high-density aquaculture environment, occlusion and overlapping among fish may result in missed detections, false detections, and identity switching problems, which limit the tracking accuracy. To address these issues, this paper proposes FishTracker, a MOT algorithm, by utilizing a Tracking-by-Detection framework. First, the neck part of the YOLOv8 model is enhanced by introducing… More >

  • Open Access

    ARTICLE

    Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring

    Moneerah Alotaibi*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069195 - 10 November 2025

    Abstract Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods, which often demand extensive computational resources and struggle with diverse data acquisition techniques. This research presents a novel approach for vehicle classification and recognition in aerial image sequences, integrating multiple advanced techniques to enhance detection accuracy. The proposed model begins with preprocessing using Multiscale Retinex (MSR) to enhance image quality, followed by Expectation-Maximization (EM) Segmentation for precise foreground object identification. Vehicle detection is performed using the state-of-the-art YOLOv10 framework, while feature extraction incorporates Maximally Stable Extremal… More >

  • Open Access

    ARTICLE

    An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process

    Bo Zhu1,#, Enzhi Dong1,#, Zhonghua Cheng1,*, Xianbiao Zhan2, Kexin Jiang1, Rongcai Wang 3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.069194 - 10 November 2025

    Abstract With the increasing complexity of industrial automation, planetary gearboxes play a vital role in large-scale equipment transmission systems, directly impacting operational efficiency and safety. Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment, leading to excessive maintenance costs or potential failure risks. However, existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes. To address these challenges, this study proposes a novel condition-based maintenance framework for planetary gearboxes. A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals, which were then processed using a… More >

  • Open Access

    ARTICLE

    Development of a CNT/Bi2S3/PVDF composite waterproof film-based strain sensor for motion monitoring

    A. X. Yanga, L. F. Huangb,*, Y. Y. Liuc

    Chalcogenide Letters, Vol.22, No.7, pp. 649-663, 2025, DOI:10.15251/CL.2025.227.649

    Abstract An innovative flexible electronic device was developed by integrating functionalized carbon nanotubes, bismuth sulfide nanostructures, and a polyvinylidene fluoride matrix to create a highly water‐resistant strain detection platform. The fabricated film exhibited a remarkable static water contact angle of 141°, with only a 3–4° reduction after 48 hours of immersion, confirming its excellent hydrophobic performance. Mechanical testing revealed a tensile strength of 43.2 MPa and maintained over 96% of its original strength following 1000 bending cycles, thereby demonstrating outstanding durability under repetitive deformation. Electrical characterization showed an initial conductivity of 12.3 S/m and a baseline resistance near… More >

  • Open Access

    ARTICLE

    Atmospheric Delay Correction Using GNSS and GACOS Data in InSAR Land Subsidence Monitoring over Banting, Selangor

    Mohd Hakimi Abdul Rahman1, Amir Sharifuddin Ab Latip1,*, Zulkiflee Abd Latif1,2, Siti Balqis Mohd Tun1, Nur Azlina Hariffin1, Mohd Fikri Razali3

    Revue Internationale de Géomatique, Vol.34, pp. 959-972, 2025, DOI:10.32604/rig.2025.071109 - 12 December 2025

    Abstract Atmospheric phase delay, primarily caused by water vapor in the troposphere, is a major source of error in InSAR measurements, especially for land subsidence monitoring. This study integrates GNSS and GACOS data to correct tropospheric delay and enhance InSAR accuracy in Banting, Selangor. A total of 27 Sentinel-1A images, 14 GNSS stations, and 27 corresponding GACOS ZTD maps were used to monitor subsidence between 2023 and 2025. The InSAR data were processed using SNAP, StaMPS, and the TRAIN toolbox, incorporating both GNSS- and GACOS-derived ZTD corrections. The results show that applying atmospheric correction improved the… More >

Displaying 1-10 on page 1 of 379. Per Page