Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (313)
  • Open Access

    ARTICLE

    Construction Monitoring and Analysis of Asymmetric Prestressed Concrete Bridge Crossing Multiple-Line Railways

    Yi Wang1, Bing Wang2, Changwen Li2, Feng Zheng1, Yong Liu2, Shaohua He3,*

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 385-398, 2025, DOI:10.32604/sdhm.2024.054761 - 15 January 2025

    Abstract Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution, which carries inherent risks. Consequently, a variety of engineering practices are employed to monitor bridge construction. This paper presents a case study of a large-span prestressed concrete (PC) variable-section continuous girder bridge in China, proposing a feedback system for construction monitoring and establishing a finite element (FE) analysis model for the entire bridge. The alignment of the completed bridge adheres to the initial design expectations, with maximum displacement and pre-arch differences from the ideal state measuring 6.39 and 17.7 mm, respectively, which More >

  • Open Access

    ARTICLE

    Energy-Efficient Internet of Things-Based Wireless Sensor Network for Autonomous Data Validation for Environmental Monitoring

    Tabassum Kanwal1, Saif Ur Rehman1,*, Azhar Imran2, Haitham A. Mahmoud3

    Computer Systems Science and Engineering, Vol.49, pp. 185-212, 2025, DOI:10.32604/csse.2024.056535 - 10 January 2025

    Abstract This study presents an energy-efficient Internet of Things (IoT)-based wireless sensor network (WSN) framework for autonomous data validation in remote environmental monitoring. We address two critical challenges in WSNs: ensuring data reliability and optimizing energy consumption. Our novel approach integrates an artificial neural network (ANN)-based multi-fault detection algorithm with an energy-efficient IoT-WSN architecture. The proposed ANN model is designed to simultaneously detect multiple fault types, including spike faults, stuck-at faults, outliers, and out-of-range faults. We collected sensor data at 5-minute intervals over three months, using temperature and humidity sensors. The ANN was trained on 70%… More >

  • Open Access

    ARTICLE

    LiDAR-Visual SLAM with Integrated Semantic and Texture Information for Enhanced Ecological Monitoring Vehicle Localization

    Yiqing Lu1, Liutao Zhao2,*, Qiankun Zhao3

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1401-1416, 2025, DOI:10.32604/cmc.2024.058757 - 03 January 2025

    Abstract Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors. These vehicles are crucial in various fields, including environmental science research, ecological and environmental monitoring projects, disaster response, and emergency management. A key method employed in these vehicles for achieving high-precision positioning is LiDAR (lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping (SLAM). However, maintaining high-precision localization in complex scenarios, such as degraded environments or when dynamic objects are present, remains a significant challenge. To address this issue, we integrate both semantic and… More >

  • Open Access

    REVIEW

    Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations: A Review

    Chao Zhang1, Shang-Xi Lai1, Hua-Ping Wang1,2,*

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 25-54, 2025, DOI:10.32604/sdhm.2024.053662 - 15 November 2024

    Abstract Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure. Therefore, it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring (SHM) system, so as to provide a scientific basis for structural damage identification and dynamic model modification. In view of this, this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters. The paper primarily introduces data-driven modal parameter recognition methods… More >

  • Open Access

    PROCEEDINGS

    Adaptive Quality Enhancement in Robotic Laser-Directed Energy Deposition Through Melt Pool Simulation

    Jungyeon Kim1, Lequn Chen1, Seung Ki Moon1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012511

    Abstract Robotic Laser-Directed Energy Deposition (L-DED) offers significant advantages in terms of workplace size and kinematic flexibility for part fabrication. However, its potential is hindered by challenges such as toolpath precision and speed inconsistency compared to traditional CNC machines. These limitations critically affect melt pool dynamics, temperature consistency, and ultimately, the geometric integrity of fabricated parts, areas that are still not thoroughly understood or quantified.
    This preliminary research aims to investigate the impact of these inaccuracies on melt pool morphology and part quality, utilizing in-situ collected speed/position data with a digital twin model, notably the Eagar-Tsai… More >

  • Open Access

    PROCEEDINGS

    Multi-Modality In-Situ Monitoring Big Data Mining for Enhanced Insight into the Laser Powder Bed Fusion Process, Structure, and Properties

    Xiayun Zhao1,*, Haolin Zhang1, Md Jahangir Alam1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011479

    Abstract Laser powder bed fusion (LPBF) is one predominant additive manufacturing (AM) technology for producing metallic parts with sophisticated designs that can find numerous applications in critical industries such as aerospace. To achieve precise, resilient, and intelligent LPBF, a comprehensive understanding of the dynamic processes and material responses within the actual conditions of LPBF-based AM is essential. However, obtaining such insights is challenging due to the intricate interactions among the laser, powder, part layers, and gas flow, among other factors. Multimodal in-situ monitoring is desired to visualize diverse process signatures, allowing for the direct and thorough… More >

  • Open Access

    ARTICLE

    IoT-Enabled Plant Monitoring System with Power Optimization and Secure Authentication

    Samsul Huda1,*, Yasuyuki Nogami2, Maya Rahayu2, Takuma Akada2, Md. Biplob Hossain2, Muhammad Bisri Musthafa2, Yang Jie2, Le Hoang Anh2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3165-3187, 2024, DOI:10.32604/cmc.2024.058144 - 18 November 2024

    Abstract Global food security is a pressing issue that affects the stability and well-being of communities worldwide. While existing Internet of Things (IoT) enabled plant monitoring systems have made significant strides in agricultural monitoring, they often face limitations such as high power consumption, restricted mobility, complex deployment requirements, and inadequate security measures for data access. This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings. Our system strategically combines power efficiency, portability, and secure access capabilities, assisting farmers in monitoring and tracking crop environmental conditions. The proposed system includes a… More >

  • Open Access

    PROCEEDINGS

    In-Situ Monitoring of Interplay Between Melt Pool, Spatter and Vapor in Laser Powder Bed Fusion Additive Manufacturing

    Xin Lin1,2,3, Kunpeng Zhu1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012499

    Abstract This paper reveals the interplay mechanism between melt pool, spattering and vapors, aiming to further improve the forming quality through in-situ monitoring with a CMOS camera. A Residual Network based on Convolutional Block Attention Module and Focal loss function is proposed to extract multi-scale features of single tracks and learn about their behavior changes. A t-SNE clustering analysis is utilized to analysis a large amount of time sequence data on the melt pool by collecting the schlieren photographs. It is found that patterns of unstable melt pool changing corelate to the defects in single tracks, More >

  • Open Access

    PROCEEDINGS

    In-Situ Process Monitoring and Quality Evaluation for Fused Deposition Modeling with Foaming Materials

    Zhaowei Zhou1, Kaicheng Ruan1, Donghua Zhao1, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011376

    Abstract Fused deposition modeling (FDM) with foaming materials offers the capability to generate internal porous structures through in-situ foaming, imparting favorable characteristics such as weight reduction, shock absorption, thermal insulation, and sound insulation to printed objects. However, the process planning for this technology presents challenges due to the difficulty in accurately controlling the foaming rate, stemming from a complex underlying mechanism that remains poorly understood. This study introduces a multi-sensor platform for FDM with foaming materials, facilitating in-situ process monitoring of temperature field information during material modeling and quality evaluation of printed objects, i.e., abnormal foaming… More >

  • Open Access

    PROCEEDINGS

    A Digital Twin Framework for Structural Strength Monitoring

    Ziyu Xu1, Kuo Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011245

    Abstract Considering experimental testing data is costly, and sensor data is often sparse, while simulation analysis provides overall strength information with lower accuracy, a digital twin framework is proposed for full-field structural strength assessment and prediction. The framework is mainly divided into two stages. In the offline stage, the simulation model of the structure is established, and the sensor layouts are completed. Then, the DNN pre-training model is constructed based on the reduced simulation data. In the online stage, the experimentally measured data are predicted to obtain the time-series sensors data, and the traditional transfer learning… More >

Displaying 1-10 on page 1 of 313. Per Page