Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (260)
  • Open Access

    ARTICLE

    Acoustic Scattering Performance for Sources in Arbitrary Motion

    Yunpeng Ma1, Lifeng Wang1, *, Mingxu Yi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.1, pp. 89-108, 2017, DOI:10.3970/cmes.2017.113.086

    Abstract In this paper, an analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field generated by moving bodies. This provides the imposition of the Neumann boundary condition on a rigid scattering surface. In order to calculate the scattering sound pressure of the duct, a thin-body boundary element method (BEM) has been proposed. The radiate sound pressure is calculated using the acoustic analogy FW-H equation. The scattering effect of the duct wall on the propagation of the sound wave is presented using the thin-body BEM. Computational results for a pulsating sphere,… More >

  • Open Access

    ARTICLE

    New Insights on Energy Conserved Planar Motion

    Maruthi R. Akella1, Sofokli Cakalli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.2, pp. 119-127, 2016, DOI:10.3970/cmes.2016.111.119

    Abstract The planar motion of a particle within an arbitrary potential field is considered. The particle is additionally subject to an external force wherein the applied thrust-acceleration is constrained to remain normal to the velocity vector. The system is thus non-conservative but since the thrust force is non-working, the total energy is a conserved quantity. Under this setting, a major result of fundamental importance is established in this paper: that the flight direction angle (more precisely, the sine of the angle between the position and velocity vectors) is shown to always satisfy a linear first-order differential equation with variable coefficients that… More >

  • Open Access

    ARTICLE

    On Collision Local Time of Two Independent Subfractional Brownian Motions

    Jingjun Guo1, Yanping Xiao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.6, pp. 519-536, 2015, DOI:10.3970/cmes.2015.109.519

    Abstract We study the existence of collision local time of two independent subfractional Brownian motions with different coefficients in (-1/2,1/2) using an alternative expression. We prove that the collision local time is a Hida distribution based on the canonical framework of white noise analysis, and get chaos expansions. Finally, we show that the collision local time exists in (L2) under appropriate conditions. More >

  • Open Access

    ARTICLE

    An Improved WCSPH Method to Simulate the Non-Newtonian Power Law Fluid Flow Induced by Motion of a Square Cylinder

    R. Shamsoddini, N. Aminizadeh1, M. Sefid

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.3, pp. 209-230, 2015, DOI:10.3970/cmes.2015.105.209

    Abstract In this study, an improved weakly compressible Smoothed Particle Hydrodynamics method is introduced and applied for investigation of the non- Newtonian power-law fluid flow which is induced by motion of a square cylinder. The method is based on a predictor-corrector scheme and pressure velocity coupling to overcome the non-physical fluctuations of WCSPH. The numerical method is also supported by the corrective tensors and shifting algorithm. The results are validated against the well known test cases and benchmark data. The square motion is tested in various Reynolds numbers for various power law indices. The results show that the drag coefficient increases… More >

  • Open Access

    ARTICLE

    Constrained Optimization Multi-dimensional Harmonic Balance Method for Quasi-periodic Motions of Nonlinear Systems

    Haitao Liao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.3, pp. 207-234, 2013, DOI:10.3970/cmes.2013.095.207

    Abstract The constrained optimization multi-dimensional harmonic balance method for calculating the quasi-periodic solutions of nonlinear systems is presented. The problem of determining the worst quasi-periodic response is transformed into a nonlinear optimization problem with nonlinear equality constraints. The general nonlinear equality constraints are built using a set of nonlinear algebraic equations which is derived using the multi-dimensional harmonic balance method. The Multi- Start algorithm is adopted to solve the resulting constrained maximization problem. Finally, the validity of the proposed method is demonstrated with a Duffing oscillator and numerical case studies for problems with uncertainties are performed on a nonlinear two-degree of… More >

  • Open Access

    ARTICLE

    Thermocapillary Motion of a Spherical Drop in a Spherical Cavity

    Tai C. Lee1, Huan J. Keh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.5, pp. 317-333, 2013, DOI:10.3970/cmes.2013.093.317

    Abstract A theoretical study of the thermocapillary migration of a fluid sphere located at an arbitrary position inside a spherical cavity is presented in the quasisteady limit of small Reynolds and Marangoni numbers. The applied temperature gradient is perpendicular to the line through the drop and cavity centers. The general solutions to the energy and momentum equations governing the system are constructed from the superposition of their fundamental solutions in the spherical coordinates originating from the two centers, and the boundary conditions are satisfied by a multipole collocation method. Results for the thermocapillary migration velocity of the drop are obtained for… More >

  • Open Access

    ARTICLE

    A Particle Simulation of 2-D Vessel Motions Interacting with Liquid-Sloshing Cargo

    Byung-Hyuk Lee1, Se-min Jeong2, Sung-Chul Hwang2, Jong-Chun Park3, Moo-Hyun Kim4

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.1, pp. 43-63, 2013, DOI:10.3970/cmes.2013.091.043

    Abstract The violent free-surface motions interacting with floating vessels containing inner liquid tanks are investigated by using the newly developed Moving Particle Semi-implicit (MPS) method for 2-dimensional incompressible flow simulation. In the present numerical examples, many efficient and robust algorithms have been developed and applied to improve the overall quality and efficiency in solving various highly nonlinear free-surface problems and evaluating impact pressures compared to the original MPS method proposed by Koshizuka and Oka (1996). For illustration, the improved MPS method is applied to the simulation of nonlinear floating-body motions, violent sloshing motions and corresponding impact loads, and vessel motions with… More >

  • Open Access

    ARTICLE

    Simulation of Sloshing Effect on Vessel Motions by Using MPS (Moving Particle Simulation)

    K.S. Kim1, B.H. Lee2, M.H. Kim1, J.C. Park3

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 201-222, 2011, DOI:10.3970/cmes.2011.079.201

    Abstract The coupling and interactions between vessel motion and inner-tank sloshing are investigated by a potential-CFD (Computational Fluid Dynamics) hybrid method in time domain. Potential-theory-based 3D diffraction/radiation panel program is used to obtain the hydrodynamic coefficients and wave forces for the simulation of vessel motion in time domain. The liquid sloshing in tanks is simulated in time domain by using the improved Moving Particle Simulation (PNU-MPS) method and it is validated through comparison against sloshing experiments. The calculated sloshing tank forces and moments are applied to the vessel-motion simulation as excitation forces and moments. The updated ship motion, which is influenced… More >

  • Open Access

    ARTICLE

    Motion of Small Solid Particles in a Viscous Fluid Enclosed in a Cavity

    L. Hedhili, A. Sellier, L. Elasmi, F. Feuillebois

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.2, pp. 137-170, 2011, DOI:10.3970/cmes.2011.073.137

    Abstract The motion of a solid particle embedded in a viscous fluid in a closed container requires a precise account of wall effects when in creeping flow. The boundary integral method, which amounts to solving a Fredholm integral equation for the stress on the particle and walls, is used here. The accuracy of the method is improved by using curvilinear six-node triangular boundary elements, the size of which is specially adapted to the particle shape and position with respect to walls. The method is applied to resolve the case of a moving particle in a parallelepiped container. It is validated by… More >

  • Open Access

    ARTICLE

    A Nonlinear Dynamic Model for Periodic Motion of Slender Threadline Structures

    Jinling Long1,2, Bingang Xu1,3, Xiaoming Tao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.4, pp. 273-298, 2011, DOI:10.3970/cmes.2011.072.273

    Abstract Moving slender threadline structures are widely used in various engineering fields. The dynamics of these systems is sometimes time dependent but in most cases follows a periodic pattern, and slender yarn motion in textile engineering is a typical problem of this category. In the present paper, we propose a nonlinear approach to model the dynamic behavior of slender threadline structures with a real example in the analysis of slender yarn motion in spinning. Moving boundary conditions of yarn are derived and a consequence of the perturbation analysis for the dimensionless governing equations provides the zero order approximate equation of motion… More >

Displaying 231-240 on page 24 of 260. Per Page