Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    An Optimization Capacity Design Method of Wind/Photovoltaic/Hydrogen Storage Power System Based on PSO-NSGA-II

    Lei Xing1, Yakui Liu2,3,*

    Energy Engineering, Vol.120, No.4, pp. 1023-1043, 2023, DOI:10.32604/ee.2023.025335

    Abstract The optimal allocation of integrated energy system capacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy, which has attracted many attentions. However, the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters. To solve the above problem, the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms. Firstly, an integrated energy system consisting of the photovoltaic, wind turbine, electrolysis cell, hydrogen storage tank, and energy storage is established. Meanwhile, the minimum economic cost, the maximum wind and PV power consumption rate, and the… More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization of External Louvers in Buildings

    Tzu-Chia Chen1, Ngakan Ketut Acwin Dwijendra2, I. Wayan Parwata3, Agata Iwan Candra4, Elsayed M. Tag El Din5,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1305-1316, 2023, DOI:10.32604/cmc.2023.033274

    Abstract Because solar energy is among the renewable energies, it has traditionally been used to provide lighting in buildings. When solar energy is effectively utilized during the day, the environment is not only more comfortable for users, but it also utilizes energy more efficiently for both heating and cooling purposes. Because of this, increasing the building’s energy efficiency requires first controlling the amount of light that enters the space. Considering that the only parts of the building that come into direct contact with the sun are the windows, it is essential to make use of louvers in order to regulate the… More >

  • Open Access

    ARTICLE

    A Modified Bi-Directional Evolutionary Structural Optimization Procedure with Variable Evolutionary Volume Ratio Applied to Multi-Objective Topology Optimization Problem

    Xudong Jiang1,*, Jiaqi Ma1, Xiaoyan Teng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 511-526, 2023, DOI:10.32604/cmes.2022.022785

    Abstract Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive, aviation and construction industries. This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization (BESO). The conventional BESO is provided with constant evolutionary volume ratio (EVR), whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements. To address the issue, the modified BESO with variable EVR is introduced. To compromise the natural frequency and the dynamic stiffness, a weighting scheme of sensitivity… More >

  • Open Access

    ARTICLE

    Scheduling an Energy-Aware Parallel Machine System with Deteriorating and Learning Effects Considering Multiple Optimization Objectives and Stochastic Processing Time

    Lei Wang1,2,*, Yuxin Qi1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 325-339, 2023, DOI:10.32604/cmes.2022.019730

    Abstract Currently, energy conservation draws wide attention in industrial manufacturing systems. In recent years, many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as an effective approach. This paper puts forwards a multi-objective stochastic parallel machine scheduling problem with the consideration of deteriorating and learning effects. In it, the real processing time of jobs is calculated by using their processing speed and normal processing time. To describe this problem in a mathematical way, a multi-objective stochastic programming model aiming at realizing makespan and energy consumption minimization is formulated. Furthermore, we develop a multi-objective… More >

  • Open Access

    ARTICLE

    Hybrid Multi-Object Optimization Method for Tapping Center Machines

    Ping-Yueh Chang1, Fu-I Chou1, Po-Yuan Yang2,*, Shao-Hsien Chen3

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 23-38, 2023, DOI:10.32604/iasc.2023.031609

    Abstract This paper proposes a hybrid multi-object optimization method integrating a uniform design, an adaptive network-based fuzzy inference system (ANFIS), and a multi-objective particle swarm optimizer (MOPSO) to optimize the rigid tapping parameters and minimize the synchronization errors and cycle times of computer numerical control (CNC) machines. First, rigid tapping parameters and uniform (including 41-level and 19-level) layouts were adopted to collect representative data for modeling. Next, ANFIS was used to build the model for the collected 41-level and 19-level uniform layout experiment data. In tapping center machines, the synchronization errors and cycle times are important considerations, so these two objects… More >

  • Open Access

    ARTICLE

    Optimization of the Placement and Size of Photovoltaic Source

    Maawiya Ould Sidi1,*, Mustafa Mosbah2, Rabie Zine3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1855-1870, 2023, DOI:10.32604/cmc.2023.030032

    Abstract This paper presents a new optimization study of the placement and size of a photovoltaic source (PVS) in a distribution grid, based on annual records of meteorological parameters (irradiance, temperature). Based on the recorded data, the production output as well as the daily average power (24-h vector) of the PVS is extracted over the year. When a power vector is available, it can be used as an input when searching for the optimal size of the PVS. This allows to take into account the constraint of the variation of the power generated by this source considering the variation of the… More >

  • Open Access

    ARTICLE

    Data Mining Based Integrated Electric-Gas Energy System Multi-Objective Optimization

    Zhukui Tan1,*, Yongjie Ren1, Hua Li1, Weili Ren2, Xichao Zhou2, Ming Zeng1

    Energy Engineering, Vol.119, No.6, pp. 2607-2619, 2022, DOI:10.32604/ee.2022.019550

    Abstract With the proposal of carbon neutrality, how to improve the proportion of clean energy in energy consumption and reduce carbon dioxide emissions has become the important challenge for the traditional energy industry. Based on the idea of multi-energy complementarity, a typical integrated energy system consisting of electric system and gas system is constructed based on the application of power to gas (P2G) technology and gas turbine in this paper. Furthermore, a multi-objective optimization model with economic improvement, carbon emission reduction and peak-load shifting as objectives is proposed, and solved by BSO algorithm. Finally, a typical power-gas coupling system is selected… More >

  • Open Access

    ARTICLE

    Multi-Objective Redundancy Optimization of Continuous-Point Robot Milling Path in Shipbuilding

    Jianjun Yao*, Chen Qian, Yikun Zhang, Geyang Yu

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1283-1303, 2023, DOI:10.32604/cmes.2022.021328

    Abstract The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space, low power consumption, and excellent flexibility. However, the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining. In the process of ship construction, the performance of the parts’ protective coating needs to be machined to meet the Performance Standard of Protective Coatings (PSPC). The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle, greatly reducing machining quality and efficiency. There have been some studies on… More >

  • Open Access

    ARTICLE

    An Improved Hyperplane Assisted Multiobjective Optimization for Distributed Hybrid Flow Shop Scheduling Problem in Glass Manufacturing Systems

    Yadian Geng1, Junqing Li1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 241-266, 2023, DOI:10.32604/cmes.2022.020307

    Abstract To solve the distributed hybrid flow shop scheduling problem (DHFS) in raw glass manufacturing systems, we investigated an improved hyperplane assisted evolutionary algorithm (IhpaEA). Two objectives are simultaneously considered, namely, the maximum completion time and the total energy consumptions. Firstly, each solution is encoded by a three-dimensional vector, i.e., factory assignment, scheduling, and machine assignment. Subsequently, an efficient initialization strategy embeds two heuristics are developed, which can increase the diversity of the population. Then, to improve the global search abilities, a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions. Furthermore, a local search heuristic based on… More >

  • Open Access

    ARTICLE

    Energy Efficient Load Balancing and Routing Using Multi-Objective Based Algorithm in WSN

    Hemant Kumar Vijayvergia1,*, Uma Shankar Modani2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3227-3239, 2023, DOI:10.32604/iasc.2023.031357

    Abstract In wireless sensor network (WSN), the gateways which are placed far away from the base station (BS) forward the collected data to the BS through the gateways which are nearer to the BS. This leads to more energy consumption because the gateways nearer to the BS manages heavy traffic load. So, to overcome this issue, loads around the gateways are to be balanced by presenting energy efficient clustering approach. Besides, to enhance the lifetime of the network, optimal routing path is to be established between the source node and BS. For energy efficient load balancing and routing, multi objective based… More >

Displaying 31-40 on page 4 of 106. Per Page