Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Analysis of Snow Distribution and Displacement in the Bogie Region of a High-Speed Train

    Zhihui Du1, Mengge Yu1,*, Jiali Liu2, Xiulong Yao1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1687-1701, 2024, DOI:10.32604/fdmp.2024.047315 - 23 July 2024

    Abstract Snow interacting with a high-speed train can cause the formation of ice in the train bogie region and affect its safety. In this study, a wind-snow multiphase numerical approach is introduced for high-speed train bogies on the basis of the Euler-Lagrange discrete phase model. A particle-wall impact criterion is implemented to account for the presence of snow particles on the surface. Subsequently, numerical simulations are conducted, considering various snow particle diameter distributions and densities. The research results indicate that when the particle diameter is relatively small, the distribution of snow particles in the bogie cavity More >

  • Open Access

    ARTICLE

    Influence of Methane-Hydrogen Mixture Characteristics on Compressor Vibrations

    Vladimir Ya. Modorskii, Ivan E. Cherepanov*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1031-1043, 2024, DOI:10.32604/fdmp.2024.048494 - 07 June 2024

    Abstract A transition to clean hydrogen energy will not be possible until the issues related to its production, transportation, storage, etc., are adequately resolved. Currently, however, it is possible to use methane-hydrogen mixtures. Natural gas can be transported using a pipeline system with the required pressure being maintained by gas compression stations. This method, however, is affected by some problems too. Compressors emergency stops can be induced by vibrations because in some cases, mechanical methods are not able to reduce the vibration amplitude. As an example, it is known that a gas-dynamic flow effect in labyrinth… More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of Multiphase Flow in Subsurface Reservoirs: Existing Challenges and New Treatments

    Shuyu Sun1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09671

    Abstract Two or multiple phases commonly occur as fluid mixture in petroleum industry, where oil, gas and water are often produced and transported together. As a result, petroleum reservoir engineers spent great efforts in the development and production of oil and gas reservoirs by conducting and interpolating the simulation of multiphase flows in porous geological formation. Meanwhile, environmental scientists use subsurface flow and transport models to investigate and compare for example various schemes to inject and store CO2 in subsurface geological formations, such as depleted reservoirs and deep saline aquifers. In this work, we first present… More >

  • Open Access

    ARTICLE

    Spatio-Temporal Characteristics of Heat Transfer of Methanation in Fluidized Bed for Pyrolysis and Gasification Syngas of Organic Solid Waste

    Danyang Shao1, Xiaojia Wang1,*, Delu Chen1, Fengxia An1,2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3659-3680, 2023, DOI:10.32604/jrm.2023.029220 - 10 August 2023

    Abstract Methanation is an effective way to efficiently utilize product gas generated from the pyrolysis and gasification of organic solid wastes. To deeply study the heat transfer and mass transfer mechanisms in the reactor, a successful three-dimensional comprehensive model has been established. Multiphase flow behavior and heat transfer mechanisms were investigated under reference working conditions. Temperature is determined by the heat release of the reaction and the heat transfer of the gas-solid flow. The maximum temperature can reach 951 K where the catalyst gathers. In the simulation, changes in the gas inlet velocity and catalyst flow… More >

  • Open Access

    ARTICLE

    Numerical Investigation of the Multiphase Flow Originating from the Muzzle of Submerged Parallel Guns

    Dongxiao Zhang1, Lin Lu1,*, Xiaobin Qi2,3, Xuepu Yan1, Cisong Gao1, Yanxiao Hu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2707-2728, 2023, DOI:10.32604/fdmp.2023.028641 - 25 June 2023

    Abstract A two-dimensional model, employing a dynamic mesh technology, is used to simulate numerically the transient multiphase flow field produced by two submerged parallel guns. After a grid refinement study ensuring grid independence, five different conditions are considered to assess the evolution of cavitation occurring in proximity to the gun muzzle. The simulation results show that flow interference is enabled when the distance between the parallel barrels is relatively small; accordingly, the generation and evolution of the vapor cavity becomes more complex. By means of the Q criterion for vorticity detection, it is shown that cavitation More >

  • Open Access

    ARTICLE

    Three-Dimensional Simulation of Hydrodynamic Mechanism of Fluidized Bed Methanation

    Xiaojia Wang1,*, Danyang Shao1, Delu Chen1, Yutong Gong1, Fengxia An1,2

    Journal of Renewable Materials, Vol.11, No.7, pp. 3155-3175, 2023, DOI:10.32604/jrm.2023.027535 - 05 June 2023

    Abstract Organic solid waste (OSW) contains many renewable materials. The pyrolysis and gasification of OSW can realize resource utilization, and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor. In order to understand the dynamic characteristics of the reactor, a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics (CFD). Along the height of the reactor, the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18% to 0.37%. Meanwhile, the pressure fluctuation range decreased from 398.76 Pa… More > Graphic Abstract

    Three-Dimensional Simulation of Hydrodynamic Mechanism of Fluidized Bed Methanation

  • Open Access

    ARTICLE

    Change Point Detection for Process Data Analytics Applied to a Multiphase Flow Facility

    Rebecca Gedda1,*, Larisa Beilina2, Ruomu Tan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1737-1759, 2023, DOI:10.32604/cmes.2022.019764 - 20 September 2022

    Abstract Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner. In the context of process data analytics, change points in the time series of process variables may have an important indication about the process operation. For example, in a batch process, the change points can correspond to the operations and phases defined by the batch recipe. Hence identifying change points can assist labelling the time series data. Various unsupervised algorithms have been developed for change point detection, including the optimisation approach which minimises a… More > Graphic Abstract

    Change Point Detection for Process Data Analytics Applied to a Multiphase Flow Facility

  • Open Access

    ARTICLE

    An Investigation into the Behavior of Non-Isodense Particles in Chaotic Thermovibrational Flow

    Georgie Crewdson, Marcello Lappa*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 497-510, 2022, DOI:10.32604/fdmp.2022.020248 - 22 February 2022

    Abstract The ability to control the distribution of particles in a fluid is generally regarded as a factor of great importance in a variety of fields (manufacturing processes, biomedical applications, materials engineering and various particle separation processes, to cite a few). The present study considers the hitherto not yet addressed situation in which solid spherical particles are dispersed in a non-isothermal fluid undergoing turbulent vibrationally-induced convection (chaotic thermovibrational flow in a square cavity due to vibrations perpendicular to the imposed temperature difference). Although the possibility to use laminar thermovibrational flows (in microgravity) and turbulent flows of More >

  • Open Access

    ABSTRACT

    Fully Phase-Wise Conservative and Bound-Preserving Algorithms for Multiphase Flow in Geological Formation

    Shuyu Sun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 24-25, 2021, DOI:10.32604/icces.2021.08590

    Abstract Modeling and simulation of multiphase flow in porous media have been a major effort in reservoir engineering and in environmental study. Petroleum engineers use reservoir simulation models to manage existing petroleum fields and to develop new oil and gas reservoirs, while environmental scientists use subsurface flow and transport models to investigate and compare for example various schemes to inject and store CO2 in subsurface geological formations, such as depleted reservoirs and deep saline aquifers. One well cited requirement is to conserve the mass globally and locally, but most popular methods of N-phase flow used in… More >

  • Open Access

    ARTICLE

    A Multiphase Wellbore Flow Model for Sour Gas “Kicks”

    Miao He1,2, Yihang Zhang1,*, Mingbiao Xu1,2,*, Jun Li3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 1031-1046, 2020, DOI:10.32604/fdmp.2020.011145 - 09 October 2020

    Abstract This study presents a new multiphase flow model with transient heat transfer and pressure coupling to simulate HTHP (high temperature and high pressure) sour gas “kicks” phenomena. The model is intended to support the estimation of wellbore temperature and pressure when sour gas kicks occur during drilling operation. The model considers sour gas solubility, phase transition and effects of temperature and pressure on the physical parameters of drilling fluid. Experimental data for a large-diameter pipe flow are used to validate the model. The results indicate that with fluid circulation, the annulus temperature with H2S kicks is… More >

Displaying 1-10 on page 1 of 20. Per Page