Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    EventTracker Based Regression Prediction with Application to Composite Sensitive Microsensor Parameter Prediction

    Hongrong Wang1,2, Xinjian Li3,4, Xingjing She1, Wenjian Ma1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2039-2055, 2025, DOI:10.32604/cmes.2025.072572 - 26 November 2025

    Abstract In modern complex systems, real-time regression prediction plays a vital role in performance evaluation and risk warning. Nevertheless, existing methods still face challenges in maintaining stability and predictive accuracy under complex conditions. To address these limitations, this study proposes an online prediction approach that integrates event tracking sensitivity analysis with machine learning. Specifically, a real-time event tracking sensitivity analysis method is employed to capture and quantify the impact of key events on system outputs. On this basis, a mutual-information–based self-extraction mechanism is introduced to construct prior weights, which are then incorporated into a LightGBM prediction More >

  • Open Access

    ARTICLE

    Hybrid Meta-Heuristic Feature Selection Model for Network Traffic-Based Intrusion Detection in AIoT

    Seungyeon Baek1,#, Jueun Jeon2,#, Byeonghui Jeong1, Young-Sik Jeong1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1213-1236, 2025, DOI:10.32604/cmes.2025.070679 - 30 October 2025

    Abstract With the advent of the sixth-generation wireless technology, the importance of using artificial intelligence of things (AIoT) devices is increasing to enhance efficiency. As massive volumes of data are collected and stored in these AIoT environments, each device becomes a potential attack target, leading to increased security vulnerabilities. Therefore, intrusion detection studies have been conducted to detect malicious network traffic. However, existing studies have been biased toward conducting in-depth analyses of individual packets to improve accuracy or applying flow-based statistical information to ensure real-time performance. Effectively responding to complex and multifaceted threats in large-scale AIoT… More >

  • Open Access

    ARTICLE

    Multi-Modal Pre-Synergistic Fusion Entity Alignment Based on Mutual Information Strategy Optimization

    Huayu Li1,2, Xinxin Chen1,2, Lizhuang Tan3,4,*, Konstantin I. Kostromitin5,6, Athanasios V. Vasilakos7, Peiying Zhang1,2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4133-4153, 2025, DOI:10.32604/cmc.2025.069690 - 23 September 2025

    Abstract To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising from modal heterogeneity during fusion, while also capturing shared information across modalities, this paper proposes a Multi-modal Pre-synergistic Entity Alignment model based on Cross-modal Mutual Information Strategy Optimization (MPSEA). The model first employs independent encoders to process multi-modal features, including text, images, and numerical values. Next, a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information. This pre-fusion strategy enables unified perception of heterogeneous modalities at the More >

  • Open Access

    ARTICLE

    Research on Fault Probability Based on Hamming Weight in Fault Injection Attack

    Tong Wu*, Dawei Zhou

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3067-3094, 2025, DOI:10.32604/cmc.2025.066525 - 23 September 2025

    Abstract Fault attacks have emerged as an increasingly effective approach for integrated circuit security attacks due to their short execution time and minimal data requirement. However, the lack of a unified leakage model remains a critical challenge, as existing methods often rely on algorithm-specific details or prior knowledge of plaintexts and intermediate values. This paper proposes the Fault Probability Model based on Hamming Weight (FPHW) to address this. This novel statistical framework quantifies fault attacks by solely analyzing the statistical response of the target device, eliminating the need for attack algorithm details or implementation specifics. Building… More >

  • Open Access

    ARTICLE

    A Hybrid Feature Selection Method for Advanced Persistent Threat Detection

    Adam Khalid1, Anazida Zainal1, Fuad A. Ghaleb2, Bander Ali Saleh Al-rimy3, Yussuf Ahmed2,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5665-5691, 2025, DOI:10.32604/cmc.2025.063451 - 30 July 2025

    Abstract Advanced Persistent Threats (APTs) represent one of the most complex and dangerous categories of cyber-attacks characterised by their stealthy behaviour, long-term persistence, and ability to bypass traditional detection systems. The complexity of real-world network data poses significant challenges in detection. Machine learning models have shown promise in detecting APTs; however, their performance often suffers when trained on large datasets with redundant or irrelevant features. This study presents a novel, hybrid feature selection method designed to improve APT detection by reducing dimensionality while preserving the informative characteristics of the data. It combines Mutual Information (MI), Symmetric… More >

  • Open Access

    ARTICLE

    Deep Learning Network Intrusion Detection Based on MI-XGBoost Feature Selection

    Manzheng Yuan1,2, Kai Yang2,*

    Journal of Cyber Security, Vol.7, pp. 197-219, 2025, DOI:10.32604/jcs.2025.066089 - 07 July 2025

    Abstract Currently, network intrusion detection systems (NIDS) face significant challenges in feature redundancy and high computational complexity, which hinder the improvement of detection performance and significantly reduce operational efficiency. To address these issues, this paper proposes an innovative weighted feature selection method combining mutual information and Extreme Gradient Boosting (XGBoost). This method aims to leverage their strengths to identify crucial feature subsets for intrusion detection accurately. Specifically, it first calculates the mutual information scores between features and target variables to evaluate individual discriminatory capabilities of features and uses XGBoost to obtain feature importance scores reflecting their… More >

  • Open Access

    ARTICLE

    Contribution Tracking Feature Selection (CTFS) Based on the Fusion of Sparse Autoencoder and Mutual Information

    Yifan Yu, Dazhi Wang*, Yanhua Chen, Hongfeng Wang, Min Huang

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3761-3780, 2024, DOI:10.32604/cmc.2024.057103 - 19 December 2024

    Abstract For data mining tasks on large-scale data, feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance. Traditional wrapper feature selection methodologies typically require extensive model training and evaluation, which cannot deliver desired outcomes within a reasonable computing time. In this paper, an innovative wrapper approach termed Contribution Tracking Feature Selection (CTFS) is proposed for feature selection of large-scale data, which can locate informative features without population-level evolution. In other words, fewer evaluations are needed for CTFS compared to other evolutionary methods. We initially More >

  • Open Access

    ARTICLE

    Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection

    Abbas Ali Hassan, Fardin Abdali-Mohammadi*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 971-983, 2024, DOI:10.32604/cmc.2024.053817 - 15 October 2024

    Abstract From a medical perspective, the 12 leads of the heart in an electrocardiogram (ECG) signal have functional dependencies with each other. Therefore, all these leads report different aspects of an arrhythmia. Their differences lie in the level of highlighting and displaying information about that arrhythmia. For example, although all leads show traces of atrial excitation, this function is more evident in lead II than in any other lead. In this article, a new model was proposed using ECG functional and structural dependencies between heart leads. In the prescreening stage, the ECG signals are segmented from… More >

  • Open Access

    ARTICLE

    Enhancing Unsupervised Domain Adaptation for Person Re-Identification with the Minimal Transfer Cost Framework

    Sheng Xu1, Shixiong Xiang2, Feiyu Meng1, Qiang Wu1,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4197-4218, 2024, DOI:10.32604/cmc.2024.055157 - 12 September 2024

    Abstract In Unsupervised Domain Adaptation (UDA) for person re-identification (re-ID), the primary challenge is reducing the distribution discrepancy between the source and target domains. This can be achieved by implicitly or explicitly constructing an appropriate intermediate domain to enhance recognition capability on the target domain. Implicit construction is difficult due to the absence of intermediate state supervision, making smooth knowledge transfer from the source to the target domain a challenge. To explicitly construct the most suitable intermediate domain for the model to gradually adapt to the feature distribution changes from the source to the target domain,… More >

  • Open Access

    ARTICLE

    Robust and Discriminative Feature Learning via Mutual Information Maximization for Object Detection in Aerial Images

    Xu Sun, Yinhui Yu*, Qing Cheng

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4149-4171, 2024, DOI:10.32604/cmc.2024.052725 - 12 September 2024

    Abstract Object detection in unmanned aerial vehicle (UAV) aerial images has become increasingly important in military and civil applications. General object detection models are not robust enough against interclass similarity and intraclass variability of small objects, and UAV-specific nuisances such as uncontrolled weather conditions. Unlike previous approaches focusing on high-level semantic information, we report the importance of underlying features to improve detection accuracy and robustness from the information-theoretic perspective. Specifically, we propose a robust and discriminative feature learning approach through mutual information maximization (RD-MIM), which can be integrated into numerous object detection methods for aerial images.… More >

Displaying 1-10 on page 1 of 17. Per Page