Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (84)
  • Open Access

    ARTICLE

    Improved Thermophysical Properties of Developed Ternary Nitrate-Based Phase Change Material Incorporated with MXene as Novel Nanocomposites

    I. Samylingam1, Navid Aslfattahi2, K. Kadirgama1,*, Mahendran Samykano3, L. Samylingam4, R. Saidur4,5

    Energy Engineering, Vol.118, No.5, pp. 1253-1265, 2021, DOI:10.32604/EE.2021.016087 - 16 July 2021

    Abstract In this study, nanocomposite of ternary nitrate molten salt induced with MXene is developed. LiNO3-NaNO3-KNO3 with wt% of 35:12:53 and 35:10:55 are produced and doped with MXene in the wt% of 0.2, 0.5, 1.0, and 1.5. FTIR result indicates the composites had no chemical reaction occurred during the preparation. UV-VIS analysis shows the absorption enhancement with respect to the concentration of MXene. Thermogravimetric analysis (TGA) was used to measure the thermal stability of the LiNO3-NaNO3-KNO3 induced with MXene. The ternary molten salts were stable at temperature range of 600–700°C. Thermal stability increases with the addition of More >

  • Open Access

    ARTICLE

    Green Synthesis of Silver Nanoparticles Using Plectranthus Amboinicus Leaf Extract for Preparation of CMC/PVA Nanocomposite Film

    Nguyen Thi Thanh Thuy1,*, Le Hoang Huy1, Truong Thuy Vy1, Nguyen Thi Thanh Tam2, Bien Thi Lan Thanh1, Nguyen Thi My Lan3

    Journal of Renewable Materials, Vol.9, No.8, pp. 1393-1411, 2021, DOI:10.32604/jrm.2021.015772 - 08 April 2021

    Abstract In the present study, the biogenic silver nanoparticles have been synthesized using aqueous leaf extract of Plectranthus amboinicus (PA), which acted as both reducing and stabilizing agents. The PA synthesized silver nanoparticles were blended with carboxymethyl cellulose/polyvinyl alcohol (CMC/PVA) biocomposite. The prepared AgNPs as well as the biogenic AgNPs incorporated CMC/PVA films were investigated using UV-visible spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), scanning electron microscope (SEM), and X–ray diffraction (XRD). The DLS results showed that biogenic AgNPs had the average particle size of 65.70 nm with polydispersity index of 0.44. The surface plasmon… More > Graphic Abstract

    Green Synthesis of Silver Nanoparticles Using <i>Plectranthus Amboinicus</i> Leaf Extract for Preparation of CMC/PVA Nanocomposite Film

  • Open Access

    ARTICLE

    The Application of Cellulose Nanocrystals Modified with Succinic Anhydride under the Microwave Irradiation for Preparation of Polylactic Acid Nanocomposites

    Ewa Szefer*, Agnieszka Leszczyńska, Edyta Hebda, Krzysztof Pielichowski

    Journal of Renewable Materials, Vol.9, No.6, pp. 1127-1142, 2021, DOI:10.32604/jrm.2021.014584 - 11 March 2021

    Abstract The aim of this work was to use cellulose nanocrystals that were obtained by hydrolysis in phosphoric acid solution and further modified with succinic anhydride in the microwave field for PLA reinforcement. A series of all-bionanocomposites containing unmodified and surface modified cellulose nanocrystals with CNC content in the range of 1–3 %w.t. were obtained by melt blending and tested by XRD, SEM, DSC and DMA to investigate the effect of surface esterification of CNCs on the structure, morphology, dynamic mechanical properties of bionanocomposites, as well as phase transitions of PLA in the presence of cellulosic nanofiller. More > Graphic Abstract

    The Application of Cellulose Nanocrystals Modified with Succinic Anhydride under the Microwave Irradiation for Preparation of Polylactic Acid Nanocomposites

  • Open Access

    ARTICLE

    Synthesis of Novel Nanocomposite Based on Carboxymethylcellulose (CMC), Kaolin and Urea Fertilizer for Controlled Release

    NALINI SHARMA1,*, AJAY SINGH2, RAJ KUMAR DUTTA3

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 1-15, 2020, DOI:10.32381/JPM.2020.37.1-2.1

    Abstract Controlled Release fertilizers (CRFs) are new generation agrochemicals which aid in decreasing environmental pollution. In the present study, novel CRF beads are synthesized by the technique of sol-gel polymerization. CMC polymer at various concentrations was used as a matrix and kaolin was used as a binder to enhance mechanical properties of the beads. The study also reveals the incorporation of Kaolin at different concentrations and optimization of the same. Fe3+ was used as a cross-linker to obtain spherical beads. Also, a study was done to optimize the cross linking time and concentration of cross linking… More >

  • Open Access

    ARTICLE

    Properties of ABS/Organic-Attapulgite Nanocomposites Parts Fabricated by Fused Deposition Modeling

    Ling Wang1,2, Shenglong Jiang2, Chenchen Huang2, Pengyuan Dai2, Fenghua Liu2,*, Xiaopeng Qi1, Gaojie Xu2

    Journal of Renewable Materials, Vol.8, No.11, pp. 1505-1518, 2020, DOI:10.32604/jrm.2020.010544 - 28 September 2020

    Abstract The paper discusses the mechanical and thermal performance manifested in natural nanorods attapulgite (ATP) reinforced Acrylonitrile butadiene styrene (ABS) nanocomposites in the process of fused deposition modeling (FDM). Molten extrusion technique was taken to manufacture the filaments of ABS/organic-attapulgite (OAT) nanocomposites with different mass fraction and the printing operation was made by one commercial FDM three-dimensional (3D) printer. Results indicate that the mechanical performance of these FDM 3D printed specimens are improved obviously via the introduction of OAT, and tensile strength of the ABS/OAT nanocomposites parts with only 2 wt% OAT addition is enhanced by More >

  • Open Access

    ARTICLE

    A Systematic Molecular Dynamics Investigation on the Graphene Polymer Nanocomposites for Bulletproofing

    Hamidreza Noori1, Bohayra Mortazavi2, 3, Alessandro Di Pierro4, Emad Jomehzadeh5, Xiaoying Zhuang2, 3, Zi Goangseup6, Kim Sang-Hyun7, Timon Rabczuk8, 9, *

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2009-2032, 2020, DOI:10.32604/cmc.2020.011256 - 16 September 2020

    Abstract In modern physics and fabrication technology, simulation of projectile and target collision is vital to improve design in some critical applications, like; bulletproofing and medical applications. Graphene, the most prominent member of two dimensional materials presents ultrahigh tensile strength and stiffness. Moreover, polydimethylsiloxane (PDMS) is one of the most important elastomeric materials with a high extensive application area, ranging from medical, fabric, and interface material. In this work we considered graphene/PDMS structures to explore the bullet resistance of resulting nanocomposites. To this aim, extensive molecular dynamic simulations were carried out to identify the penetration of… More >

  • Open Access

    ARTICLE

    Ultrasound Assisted Synthesis of Starch Nanocrystals and It’s Applications with Polyurethane for Packaging Film

    Vikas S. Hakke1, Uday D. Bagale1, Sami Boufi2, G. Uday Bhaskar Babu1, Shirish H. Sonawane1,*

    Journal of Renewable Materials, Vol.8, No.3, pp. 239-250, 2020, DOI:10.32604/jrm.2020.08449 - 01 March 2020

    Abstract Starch nanocrystals (SNC) were prepared from maize starch using ultrasound assisted acid hydrolysis. The process takes less time for the generation of SNC, which is advantageous over conventional acid hydrolysis. The synthesized SNC were characterized using X-ray diffraction, dynamic light scattering, zeta potential and transmission electron microscopy (TEM). Particle size and TEM data show that the particles were near to 150 nm, with oval morphology. The SNC with higher surface charge are obtained with this innovative approach as compared to conventional acid hydrolysis. Because of high surface charge and oval like morphology, the SNC performed More >

  • Open Access

    ARTICLE

    Synergistic Effect of Halloyosite Nanotube and Nanocellulose on Thermal and Mechanical Properties of Poly (Ethylmethacrylate-co-Acrylonitrile) Bionanocomposites

    Karima Ben Hamou1,2,*, Amal Kadimi1, Remo Merijs Meri3, Sergei Gaidukov3, Hamid Kaddami1, Mustapha Raihane1, Mouhamed Lahcini1, Fouad Erchiqui2

    Journal of Renewable Materials, Vol.8, No.3, pp. 301-317, 2020, DOI:10.32604/jrm.2020.08141 - 01 March 2020

    Abstract This work reports a comprehensive study on poly (Ethylmethacrylateco-Acrylonitrile) Poly(EMA-AN) nanocomposites reinforced with a hybrid mixture of nanoreiforcements based on nanocrystals of cellulose (NCC) (1 or 5% wt) and halloysite nanotubes (HNTs) (1 or 5% wt). The morphology, thermal and mechanical properties of these nanocomposites were characterized. Homogeneous dispersion of the nanofillers has been shown by scanning electron microscopy. A significant increase of the rubbery modulus and glass transition temperature were obtained upon filler addition, due to the reduction of mobility of the matrix macromolecular chains. On the other hand, compared with the neat Poly(EMAAN), More >

  • Open Access

    ARTICLE

    Agglomeration Effects on Static Stability Analysis of Multi-Scale Hybrid Nanocomposite Plates

    Farzad Ebrahimi1, Ali Dabbagh2, Abbas Rastgoo2, Timon Rabczuk3, *

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 41-64, 2020, DOI:10.32604/cmc.2020.07947 - 30 March 2020

    Abstract We propose a multiscale approach to study the influence of carbon nanotubes’ agglomeration on the stability of hybrid nanocomposite plates. The hybrid nanocomposite consists of both macro- and nano-scale reinforcing fibers dispersed in a polymer matrix. The equivalent material properties are calculated by coupling the Eshelby-Mori-Tanaka model with the rule of mixture accounting for effects of CNTs inside the generated clusters. Furthermore, an energy based approach is implemented to obtain the governing equations of the problem utilizing a refined higher-order plate theorem. Subsequently, the derived equations are solved by Galerkin’s analytical method to predict the More >

  • Open Access

    ARTICLE

    Isolation of Thermally Stable Cellulose Nanocrystals from Spent Coffee Grounds via Phosphoric Acid Hydrolysis

    Brody A. Frost, E. Johan Foster*

    Journal of Renewable Materials, Vol.8, No.2, pp. 187-203, 2020, DOI:10.32604/jrm.2020.07940 - 01 February 2020

    Abstract As the world's population exponentially grows, so does the need for the production of food, with cereal production growing annually from an estimated 1.0 billion to 2.5 billion tons within the last few decades. This rapid growth in food production results in an ever increasing amount of agricultural wastes, of which already occupies nearly 50% of the total landfill area. For example, is the billions of dry tons of cellulose-containing spent coffee grounds disposed in landfills annually. This paper seeks to provide a method for isolating cellulose nanocrystals (CNCs) from spent coffee grounds, in order… More >

Displaying 21-30 on page 3 of 84. Per Page