Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (112)
  • Open Access

    ARTICLE

    Removal of Dye Using Lignin-Based Biochar/Poly(ester amide urethane) Nanocomposites from Contaminated Wastewater

    Annesha Kar1, Niranjan Karak1,2,*

    Journal of Renewable Materials, Vol.12, No.9, pp. 1507-1540, 2024, DOI:10.32604/jrm.2024.052220 - 25 September 2024

    Abstract The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials. The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies. Among the various sorbent materials explored, biochar, being renewable, has gained prominence due to its excellent adsorption properties and environmental sustainability. It has also emerged as a focal point for its potential to replace other conventional reinforcing agents, viz., fumed silica, aluminum oxide, treated clays, etc. This study introduces a novel class of… More > Graphic Abstract

    Removal of Dye Using Lignin-Based Biochar/Poly(ester amide urethane) Nanocomposites from Contaminated Wastewater

  • Open Access

    ARTICLE

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

    Borhan Albiss*, Asala Saleh

    Journal of Renewable Materials, Vol.12, No.7, pp. 1219-1236, 2024, DOI:10.32604/jrm.2024.050685 - 21 August 2024

    Abstract In this work, the fabrication and characterization of the nanocomposite hydrogel, as a solid electrode in electrochemical cell and gel electrolyte material using Indium titanium oxide/polyethylene terephthalate (ITO/PET) flexible substrate for double-layer supercapacitors have been reported. The nanocomposite hydrogel composed of Arabic gum (AG), Acrylic acid (AA), reduced graphene oxide (RGO), and silver nanoparticles (AgNPs) was fabricated via a physical cross-linked polymerization reaction, in which the ascorbic acid was used as a reducing agent to generate AgNPs and to convert Graphene oxide (GO) to RGO during the polymerization reaction. The morphology and structural characteristics of… More > Graphic Abstract

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

  • Open Access

    ARTICLE

    Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging

    Ponusa Songtipya1,2,*, Thummanoon Prodpran1,2, Ladawan Songtipya1,2, Theerarat Sengsuk1

    Journal of Renewable Materials, Vol.12, No.5, pp. 951-967, 2024, DOI:10.32604/jrm.2024.049068 - 17 July 2024

    Abstract The synergistic effect of organoclay (OC) and zinc oxide (ZnO) nanoparticles on the crucial properties of poly(lactic acid) (PLA) nanocomposite films was systematically investigated herein. After their incorporation into PLA via the solvent casting technique, the water vapor barrier property of the PLA/OC/ZnO film improved by a maximum of 86% compared to the neat PLA film without the deterioration of Young’s modulus or the tensile strength. Moreover, the film’s self-antibacterial activity against foodborne pathogens, including gram-negative (Escherichia coli, E. coli) and gram-positive (Staphylococcus aureus, S. aureus) bacteria, was enhanced by a maximum of approximately 98–99% compared to the neat… More > Graphic Abstract

    Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging

  • Open Access

    ARTICLE

    Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning

    Xingzi Yang1, Wei Gao2, Xiaodu Wang1, Xiaowei Zeng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1299-1313, 2024, DOI:10.32604/cmes.2024.049371 - 20 May 2024

    Abstract The bioinspired nacre or bone structure represents a remarkable example of tough, strong, lightweight, and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials. The bioinspired structure consists of hard grains and soft material interfaces. While the material interface has a very low volume percentage, its property has the ability to determine the bulk material response. Machine learning technology nowadays is widely used in material science. A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite. This model More >

  • Open Access

    ARTICLE

    Synthesis and tribological properties of the novel tubular MoS2/GR nanocomposite

    E. Lu*, M. Q. Wu, L. L. Dai, X. Y. Xu

    Chalcogenide Letters, Vol.20, No.7, pp. 469-476, 2023, DOI:10.15251/CL.2023.207.469

    Abstract This study used a simple one-step hydrothermal method to synthesize the MoS2/GR composites with a new morphology composed of graphene nanotubes and ultra-thin molybdenum disulfide with the help of sodium chloride. The composites were characterized by XRD, XPS, SEM, TEM, and a series of characterization methods. Meanwhile, the tribological properties of the composites were studied. The results show that the addition of 1% MoS2/GR composite nanotubes has excellent tribological properties. In addition, the structure and excellent tribological properties of MoS2-C- nanocomposite lubrication materials will be conducive to designing new nanomaterials with 2D/3D structures, enhancing the anti-friction and More >

  • Open Access

    ARTICLE

    Synthesis PEO/PS/PMMA/Se as new nanocomposite with porous morphology

    K. A. Mohammeda,*, R. A. Talibb, S. Algburic, A. Kareemd, B. Bhavanie, M. A. Alkhafajif, R. S. Zabibahg, F. H. Alsultanyh, S. Sharmai,j

    Chalcogenide Letters, Vol.20, No.12, pp. 863-870, 2023, DOI:10.15251/CL.2023.2012.863

    Abstract Novel nanocomposite structure has been made from physical mixing of polymer blend consist PMMA, PEO and PS filled with selenium nanoparticles. The nanocomposite had been deposited on glass slide by drop casting to form a thin film. This film was examined by required instrument like FESEM, XRD, EDS and UV-Vis to show the main physical properties of it. The XRD results were reflected the crystallinity nature of selenium NPs. SEM result shows the porosity nature of prepared film , where the pore size ranging from nano to micro size on all the surface of film. More >

  • Open Access

    ARTICLE

    Characterization of undoped and doped CdS nano-thin films by ZnO for photocatalytic application

    A. Thamera, S. Mohamedb,*

    Chalcogenide Letters, Vol.20, No.12, pp. 847-856, 2023, DOI:10.15251/CL.2023.2012.847

    Abstract Using Sol-gel technology, nanocomposite CdS: ZnO thin films with an equal molar ratio of 0.5 M on a glass substrate for water decontamination purposes. The ZnO doping ratios were (0, 1, 3, 5) vol. The ultrastructural, morphological, and optical properties of the prepared thin films were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-vis spectra. The results indicated that the prepared nanostructured CdS: ZnO thin films contain uniformly spaced crystalline grains of both CdS and ZnO. The ZnO-doped selection ratio and uniform grain distribution produced outstanding photocatalytic and photocatalytic performance. With a More >

  • Open Access

    ARTICLE

    Enhanced Mechanical and Electrical Properties of Styrene Butadiene Rubber Nanocomposites with Graphene Platelet Nano-powder

    ARUN KUMAR M, JAYAKUMARI LS*, RAMJI CHANDRAN

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 141-156, 2023, DOI:10.32381/JPM.2023.40.3-4.2

    Abstract Nanocomposites are very important materials because it imparts superior properties than other composites with low level of filler loading. Styrene butadiene rubber (SBR) is a non-polar rubber which acts as an insulator and has low electrical conductivity. Graphene platelet nano-powder from 0.1 to 1.25 phr level is incorporated into SBR rubber in order to improve the electrical properties. Comparative studies on electrical and mechanical properties of styrene butadiene rubber with graphene platelet nano-powder (GPN) by varying the filler content are made. The incorporation of Graphene platelet nano-powder increases the electrical conductivity in styrene butadiene rubber. More >

  • Open Access

    ARTICLE

    Study of Ultraviolet Radiation Effect on the Mechanical Properties of Jute and Montmorillonite Nanoclay Reinforced Polyester Nanocomposites

    S. ARULMURUGANa,*, N. VENKATESHWARANa, S. KUMARa, P. CHANDRASEKARa

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 83-91, 2023, DOI:10.32381/JPM.2023.40.1-2.7

    Abstract In this research, the effect of UV light on the mechanical properties of jute polymer nanocomposites was evaluated. Due to the fact that photodegradation is a surface process and is confined to the degradation of the mechanical characteristics of polyester resin, this study focuses on the resin quality. Therefore, test samples comprised of fibre-reinforced polyester nanoclay composites were fabricated different weight ratios of nanoclay. They were put through UV exposure in an Ultraviolet (UV) chamber. Tensile testing samples were made in accordance with ASTMD638 and had a minimum thickness of 3 mm. Additionally, specimens for… More >

  • Open Access

    ARTICLE

    Analysis of the Performances of a New Type of Alumina Nanocomposite Structural Material Designed for the Thermal Insulation of High-Rise Buildings

    Yue Yu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 697-709, 2023, DOI:10.32604/fdmp.2022.021482 - 29 September 2022

    Abstract The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning, thermal analysis, X-ray and infrared spectrometer analysis methods. It is found that the composite aerogel alumina material has a multi-level porous nano-network structure. When employed for the thermal insulation of high-rise buildings, the alumina nanocomposite aerogel material can lead to effective energy savings in winter. However, it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer. More >

Displaying 31-40 on page 4 of 112. Per Page