Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    HEAT TRANSFER ON MHD NANOFLUID FLOW OVER A SEMI INFINITE FLAT PLATE EMBEDDED IN A POROUS MEDIUM WITH RADIATION ABSORPTION, HEAT SOURCE AND DIFFUSION THERMO EFFECT

    N. Vedavathia , G. Dharmaiahb,* , K.S. Balamuruganc, J. Prakashd

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.38

    Abstract The effects of radiation absorption, first order chemical reaction and diffusion thermo on MHD free convective heat and mass transfer flow of a nanofluid past a semi infinite vertical flat plate are analyzed. The temperature and concentration at the surface are assumed to be oscillatory type. Four types of cubic nano particles which are uniform and size namely, Silver (Ag), Aluminum (Al2O3), Copper (Cu) and Titanium Oxide (TiO2) with water as a base fluid is taken into account. The set of ordinary differential equations are solved by using regular perturbation technique. The impact of various flow parameters on nanofluid velocity,… More >

  • Open Access

    ARTICLE

    MHD NANOFLUID FLOW WITH VISCOUS DISSIPATION AND JOULE HEATING THROUGH A PERMEABLE CHANNEL

    Habib-Olah Sayehvanda , Shirley Abelmanb,*, Amir Basiri Parsaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.30

    Abstract Magnetohydrodynamic (MHD) nanofluid flow considered to be steady, incompressible and electrically conducting, flows through permeable plates in the presence of convective heating, models as a system of nonlinear partial differential equations which are solved analytically by the Differential Transform Method (DTM). Copper, aluminum oxide and titanium dioxide nanoparticles are considered with Carboxyl Methyl Cellulose (CMC)– water as the base fluid. Variation of the effects of pertinent parameters on fluid velocity and temperature is analyzed parametrically. Verification between analytical (DTM) and numerical (fourth-order Runge-Kutta scheme) results and previous published research is shown to be quite agreeable. The temperature of Cu-water is… More >

  • Open Access

    ARTICLE

    FLOW AND HEAT TRANSFER OF CARBON NANOFLUIDS OVER A VERTICAL PLATE

    Mahantesh M Nandeppanavara,*, S. Shakunthalab

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.27

    Abstract In this paper, the buoyancy effect on flow and heat transfer characteristics of nanofluid in presence of carbon nanotubes due to a vertical plate is investigated. The obtained nonlinear PDE’s are converted to the non-linear ordinary differential equations by applying the similarity transformations corresponding to the boundary conditions. These boundary value problems are solved numerically using fourth order Runge-kutta method together with the efficient shooting iteration scheme. The nature of the flow and heat transfer are plotted and discussed in detail. It is noticed that buoyancy effect is very useful in cooling the system and present results compared with previously… More >

  • Open Access

    ARTICLE

    A COMPARATIVE STUDY OF THERMAL RADIATION EFFECTS ON MHD FLOW OF NANOFLUIDS AND HEAT TRANSFER OVER A STRETCHING SHEET

    T. Sravan Kumar, B. Rushi Kumar*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.13

    Abstract In this work, the steady natural convective boundary layer flow of nanofluid and heat transfer over a stretching sheet in the presence of a uniform transverse magnetic field is investigated. We consider two different base fluids and three different nanoparticles were examined as nanofluid. A new model was used in the simulation of nanofluid. Similarity transformations are used to obtain a system of nonlinear ordinary differential equations. The resulting equations are solved numerically by shooting method with Runge-Kutta fourth order scheme (MATLAB package). The effects of various parameters describing the transport in the presence of thermal radiation, buoyancy parameter, magnetic… More >

  • Open Access

    ARTICLE

    NON-LINEAR RADIATIVE FLOW OF NANOFLUID PAST A MOVING/STATIONARY RIGA PLATE

    G.K. Ramesha,*, B.J. Gireeshab

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.3

    Abstract The effect of non-linear thermal radiation on nanofluid flow over a riga plate is studied. Under some conditions, our problem reduces to the Blasius problem and Sakiadis problem. Similarity transformation is used to convert the governing steady Navier-Stokes equations into a system of coupled nonlinear differential equations, which are then solved numerically via Runge-Kutta-Fehlberg 45 order method along with a shooting method. Influence of parameters involved on velocity, temperature and concentration profiles is discussed with the help of graphical aid. Numerical results have been presented on the skin-friction coefficients, local Nusselt number and Sherwood number. It is found that in… More >

  • Open Access

    ARTICLE

    HEAT EXCHANGES INTENSIFICATION THROUGH A FLAT PLAT SOLAR COLLECTOR BY USING NANOFLUIDS AS WORKING FLUID

    A. Maouassia,b,*, A. Baghidjaa,b, S. Douadc , N. Zeraibic

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-7, 2018, DOI:10.5098/hmt.10.35

    Abstract This paper illustrates how practical application of nanofluids as working fluid to enhance solar flat plate collector efficiency. A numerical investigation of laminar convective heat transfer flow throw a solar collector is conducted, by using CuO-water nanofluids. The effectiveness of these nanofluids is compared to conventional working fluid (water), wherein Reynolds number and nanoparticle volume concentration in the ranges of 25– 900 and 0–10 % respectively. The effects of Reynolds number and nanoparticles concentration on the skin-friction and heat transfer coefficients are presented and discussed later in this paper. Results show that the heat transfer increases with increasing both nanoparticles… More >

  • Open Access

    ARTICLE

    IMPACT OF THERMAL RADIATION AND CHEMICAL REACTION ON UNSTEADY 2D FLOW OF MAGNETIC-NANOFLUIDS OVER AN ELONGATED PLATE EMBEDDED WITH FERROUS NANOPARTICLES

    S.P. Samrat, C. Sulochana* , G.P. Ashwinkumar

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.31

    Abstract This study reports the flow, thermal and concentration attributes of magnetic-nanofluids past an elongated plate with thermal radiation and chemical reaction. The flow considered is two-dimensional and time-dependent. The pressure gradient and ohmic heating terms are neglected in this analysis. The flow governing PDEs are transformed into ODEs using appropriate conversions. Further, the set of ODEs are solved analytically using perturbation technique. The flow quantities such as velocity, thermal and concentration fields are discussed under the influence of various pertinent parameters namely volume fraction of nanoparticle, magnetic field, stretching parameter, Soret number, radiation and chemical reaction with the assistance of… More >

  • Open Access

    ARTICLE

    MIXED BIOCONVECTION FLOW OF A NANOFLUID CONTAINING GYROTACTIC MICROORGANISMS PAST A VERTICAL SLENDER CYLINDER

    A.M. Rashada , A.J. Chamkhab , B. Mallikarjunac,*, M.M.M. Abdoua

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.21

    Abstract In this paper, the steady mixed bioconvection flow of a nanofluid containing gyrotactic microorganisms past a vertical slender cylinder is studied. The passively controlled nanofluid model is applied to approximate this nano-bioconvection flow problem, which is believed to be physically more realistic than previously commonly used actively controlled nanofluid models. Using a suitable transformation, the nonlinear system of partial differential equations is converted into non-similar equations. These resulting equations are solved numerically using an accurate implicit finitedifference method. The present numerical results are compared with available data and are found in an excellent agreement. The skin friction coefficient, local Nusselt… More >

  • Open Access

    ARTICLE

    EFFECT OF ELASTIC DEFORMATION ON NANO-SECOND GRADE FLUID FLOW OVER A STRETCHING SURFACE

    R. Kalaivanana , B. Gangab , N. Vishnu Ganeshc, A.K. Abdul Hakeema,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.20

    Abstract The main aim of the present article is to investigate the elastic deformation effects on the boundary layer flow of an incompressible second grade twophase nanofluid model over a stretching surface in the presence of suction and partial slip boundary condition. The second grade nanofluid model with elastic deformation effects is investigated for the first time. The combined effects of elastic deformation, Brownian motion and thermophoresis are also analyzed for the first time. To analyses the heat transfer, heat and mass flux boundary conditions are considered. The governing boundary layer nonlinear partial differential equations are converted into a set of… More >

  • Open Access

    ARTICLE

    BIO-MATHEMATICAL ANALYSIS FOR THE STAGNATION POINT FLOW OVER A NON-LINEAR STRETCHING SURFACE WITH THE SECOND ORDER VELOCITY SLIP AND TITANIUM ALLOY NANOPARTICLE

    S.R.R. Reddya , P. Bala Anki Reddya,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-11, 2018, DOI:10.5098/hmt.10.13

    Abstract The main object of this paper is to steady the Bio-mathematical analysis for the stagnation point flow over a non-linear stretching sheet with the velocity slip and Casson fluid model. Analysis for the both titanium and titanium alloy within the pure blood as taken as the base fluid. The governing non-linear partial differential equations are transformed into ordinary which are solved numerically by utilizing the fourth order RungeKutta method with shooting technique. Graphical results have been presented for dimensionless stream function, velocity profile, shear stress, temperature profile for various physical parameters of interest. It was found that the velocity profile… More >

Displaying 41-50 on page 5 of 153. Per Page