Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    Experimental Investigation on the Performance of Heat Pump Operating with Copper and Alumina Nanofluids

    Faizan Ahmed*, Waqar Ahmed Khan, Jamal Nayfeh

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2843-2856, 2021, DOI:10.32604/cmc.2021.012041

    Abstract In the present study, an attempt is made to enhance the performance of heat pump by utilizing two types of nanofluids namely, copper and alumina nanofluids. These nanofluids were employed around the evaporator coil of the heat pump. The nanofluids were used to enhance the heat input to the system by means of providing an external jacket around the evaporator coil. Both the nanofluids were prepared in three volume fractions 1%, 2% and 5%. Water was chosen as the base fluid. The performance of the heat pump was assessed by calculating the coefficient of performance of the system when it… More >

  • Open Access

    ARTICLE

    Thermal Analysis of MHD Non-Newtonian Nanofluids over a Porous Media

    Asad Ejaz1, Imran Abbas1, Yasir Nawaz1, Muhammad Shoaib Arif1, Wasfi Shatanawi2,3,4,*, Javeria Nawaz Abbasi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.3, pp. 1119-1134, 2020, DOI:10.32604/cmes.2020.012091

    Abstract In the present research, Tiwari and Das model are used for the impact of a magnetic field on non-Newtonian nanofluid flow in the presence of injection and suction. The PDEs are converted into ordinary differential equations (ODEs) using the similarity method. The obtained ordinary differential equations are solved numerically using shooting method along with RK-4. Part of the present study uses nanoparticles (NPs) like TiO2 and Al2O3 and sodium carboxymethyl cellulose (CMC/water) is considered as a base fluid (BF). This study is conducted to find the influence of nanoparticles, Prandtl number, and magnetic field on velocity and temperature profile, however,… More >

  • Open Access

    ARTICLE

    Peristaltic Flow of Dusty Nanofluids in Curved Channels

    Z. Z. Rashed1, Sameh E. Ahmed2,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 1012-1026, 2021, DOI:10.32604/cmc.2020.012468

    Abstract In this paper, numerical investigations for peristaltic motion of dusty nanofluids in a curved channel are performed. Two systems of partial differential equations are presented for the nanofluid and dusty phases and then the approximations of the long wave length and low Reynolds number are applied. The physical domain is transformed to a rectangular computational model using suitable grid transformations. The resulting systems are solved numerically using shooting method and mathematical forms for the pressure distributions are introduced. The controlling parameters in this study are the thermal buoyancy parameter Gr, the concentration buoyancy parameter Gc, the amplitude ratio ϵ, the… More >

  • Open Access

    ARTICLE

    Impacts of Heat Flux Distribution, Sloping Magnetic Field and Magnetic Nanoparticles on the Natural Convective Flow Contained in a Square Cavity

    Latifa M. Al-Balushi, M. M. Rahman*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 441-463, 2020, DOI:10.32604/fdmp.2020.08551

    Abstract In the present paper, the effect of the heat flux distribution on the natural convective flow inside a square cavity in the presence of a sloping magnetic field and magnetic nanoparticles is explored numerically. The nondimensional governing equations are solved in the framework of a finite element method implemented using the Galerkin approach. The role played by numerous model parameters in influencing the emerging thermal and concentration fields is examined; among them are: the location of the heat source and its lengthH*, the magnitude of the thermal Rayleigh number, the nanoparticles shape and volume fraction, and the Hartmann number. It… More >

  • Open Access

    ARTICLE

    Experimental Study on Flow and Heat Transfer Characteristics of Nanofluids in a Triangular Tube at Different Rotation Angles

    Cong Qi1,2,*, Chengchao Wang1,2, Jinghua Tang1,2, Dongtai Han2

    Energy Engineering, Vol.117, No.2, pp. 63-78, 2020, DOI:10.32604/EE.2020.010433

    Abstract Because of the poor thermal performance of ordinary tubes, a triangular tube was used to replace the smooth channel in the heat transfer system, and nanofluids were used to take the place of ordinary fluids as the heat transfer medium. High stability nanofluids were prepared, and an experimental set on flow and heat exchange was established. Effects of triangular tube rotation angles (α = 0°, 30°, 60°) as well as mass fractions of nanofluids (ω = 0.1%, 0.3%, 0.5%) on heat exchange and flow performance were experimentally considered at Reynolds numbers (Re = 800–8000). It was shown that the triangular… More >

  • Open Access

    ARTICLE

    A Controlled Conditions of Dynamic Cold Storage Using Nano fluid as PCM

    Bin Liu1, Zhaodan Yang1, Yahui Wang1, Rachid Bennacer1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.1, pp. 37-47, 2017, DOI:10.3970/fdmp.2017.013.037

    Abstract The dynamic thermal history of storage product system is related to the insulation and also to the inertia. Use a new porous media doped with nanofluid PCM to improve the system efficiency. The analysis of the porous sponge thickness with 8 mm, 16 mm and 20 mm, the integrated nanofluids with 0.1%, 0.15% and 0.2%, the mass of the PCM and the initial temperature of the stored product with -1°C, 4°C, 12°C is achieved in order to underline the advantages of the new saturated porous media (sponges) with the phase change material (PCM) /Al2O3-H2O nanofluid. The carrots are used as… More >

  • Open Access

    ABSTRACT

    Analysis on the Thermal Performance of Nanofluids As Working Fluid With Porous Heat Sinks: Applications in Electronics Cooling

    Ziad Saghir, Cayley Delisle, Christopher Welsford*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 19-19, 2019, DOI:10.32604/icces.2019.05145

    Abstract The enhancement of consumer and industrial electronics has led to an increase in both the power and compactness of the products available. However, with these increases follows a subsequent increase in the thermal losses experienced across, for example, a central processing unit (CPU). As well, the need to dissipate waste thermal energy is compounded by the increased compactness. As the chipsets become smaller, the threads contained therein also reduce in size and as such become more sensitive to temperature gradients which can cause deformation. Although this deformation is miniscule, its continuous repetition can ultimately result in a thermally induced fatigue… More >

  • Open Access

    ARTICLE

    Mixed Convection in a Lid-Driven Square Cavity With Heat Sources Using Nanofluids

    Ilhem Zeghbid1, Rachid Bessaïh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.4, pp. 251-273, 2017, DOI:10.3970/fdmp.2017.013.251

    Abstract This paper presents a numerical study of two-dimensional laminar mixed convection in a lid-driven square cavity filled with a nanofluid and heated simultaneously at a constant heat flux q” by two heat sources placed on the two vertical walls. The movable wall and the bottom wall of the cavity are maintained at a local cold temperature TC, respectively. The finite volume method was used to solve the equations of flow with heat transfer across the physical domain. Comparisons with previous results were performed and found to be in excellent agreement. Results were presented in terms of streamlines, isotherms, vertical velocity… More >

  • Open Access

    ARTICLE

    Mixed Convection of Nanofluids inside a Lid-Driven Cavity Heated by a Central Square Heat Source

    Fatima-zohra Bensouici1, *, Saadoun Boudebous2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 189-212, 2017, DOI:10.3970/fdmp.2017.013.189

    Abstract A numerical work has been performed to analyze the laminar mixed convection of nanofluids confined in a lid driven square enclosure with a central square and isotherm heat source. All the walls are cooled at constant temperature, and the top wall slides rightward at constant velocity. The simulations considered four types of nanofluids (Cu, Ag, Al2O3 and TiO2)-Water. The governing equations were solved using finite volume approach by the SIMPLER algorithm. Comparisons with previously published work are performed and found to be in good agreement. The influence of pertinent parameters such as Richardson number, size of the heat source, solid… More >

  • Open Access

    ARTICLE

    Cooling of electronic components using nanofluids

    M. Zitoune1, 2 , O. Ourrad Meziani2, B. Meziani2, M. Adnani1, 2

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.1, pp. 33-55, 2016, DOI:10.3970/fdmp.2016.012.033

    Abstract A finite volume code used for detailed analysis of forced-convection flow in a horizontal channel containing eight heat sources simulating electronic components. The study deals the effect of variations of Reynolds number, the volume fraction and the good choice of type of nanoparticles added to the base fluid. The study shows that the rate of heat transfer increases with increasing Reynolds number and the volume fraction of nanofluids but not infinitely. The analysis of the dynamic and thermal field shows that the heat transfer is improved, with the increase in the Reynolds number and the volume fraction. The study also… More >

Displaying 41-50 on page 5 of 53. Per Page