Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Research on a Simulation Platform for Typical Internal Corrosion Defects in Natural Gas Pipelines Based on Big Data Analysis

    Changchao Qi1, Lingdi Fu1, Ming Wen1, Hao Qian2, Shuai Zhao1,*

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1073-1087, 2025, DOI:10.32604/sdhm.2025.061898 - 30 June 2025

    Abstract The accuracy and reliability of non-destructive testing (NDT) approaches in detecting interior corrosion problems are critical, yet research in this field is limited. This work describes a novel way to monitor the structural integrity of steel gas pipelines that uses advanced numerical modeling techniques to anticipate fracture development and corrosion effects. The objective is to increase pipeline dependability and safety through more precise, real-time health evaluations. Compared to previous approaches, our solution provides higher accuracy in fault detection and quantification, making it ideal for pipeline integrity monitoring in real-world applications. To solve this issue, statistical… More >

  • Open Access

    ARTICLE

    Performance Analysis of Natural Gas Polyethylene Pipes Based on the Arrhenius Equation

    Li Niu1, Yang Wang1,*, Nan Lin2, Yaoying Yue1, Wenbin Fu1, Elzat Tuhanjiang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1473-1487, 2025, DOI:10.32604/fdmp.2025.062623 - 30 June 2025

    Abstract With the widespread use of polyethylene (PE) materials in gas pipelines, the problem related to the aging of these pipes has attracted increasing attention. Especially under complex environmental conditions involving temperature, humidity, and pressure changes, PE pipes are prone to oxidative degradation, which adversely affects their performance and service life. This study investigates the aging behavior of PE pipes used for gas transport under the combined effects of temperature (ranging from 80°C to 110°C) and pressure (0, 0.1, 0.2, and 0.3 MPa). By assessing the characteristics and thermal stability of the aged pipes, relevant efforts… More >

  • Open Access

    ARTICLE

    Effects of Soil Properties on the Diffusion of Hydrogen-Blended Natural Gas from an Underground Pipe

    Shiyao Peng1, Hanwen Zhang1, Chong Chai1, Shilong Xue2, Xiaobin Zhang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1099-1112, 2025, DOI:10.32604/fdmp.2025.060452 - 30 May 2025

    Abstract The diffusion of hydrogen-blended natural gas (HBNG) from buried pipelines in the event of a leak is typically influenced by soil properties, including porosity, particle size, temperature distribution, relative humidity, and the depth of the pipeline. This study models the soil as an isotropic porous medium and employs a CFD-based numerical framework to simulate gas propagation, accounting for the coupled effects of soil temperature and humidity. The model is rigorously validated against experimental data on natural gas diffusion in soil. It is then used to explore the impact of relevant parameters on the diffusion behavior… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Simulation Research on Aerodynamic Field of Integrated Exhaust End of Natural Gas Distributed Energy Station

    Shuang Li1, Suoying He2, Shen Cheng1,*, Jiarui Wu1, Ruiting Meng1

    Energy Engineering, Vol.122, No.6, pp. 2309-2335, 2025, DOI:10.32604/ee.2025.062216 - 29 May 2025

    Abstract In view of the situation of multi-temperature, multi-medium and multi-discharge equipment on the integrated exhaust end platform of a natural gas distributed energy station, which is compact in layout, mutual influence, complex aerodynamic field and complex heat and mass transfer field, the temperature field and aerodynamic field of the platform were comprehensively studied through field experiments and numerical simulation. The research results show that the high temperature flue gas discharged from the chimney is hindered by the chimney cap and returns downward. The noise reduction walls around the chimney make the top of the platform… More >

  • Open Access

    ARTICLE

    Flow and Heat Transfer Characteristics of Natural Gas Hydrate Riser Transportation

    Chenhong Li1, Guojin Han1, Hua Zhong1, Chao Zhang1, Rui Zhang2, Jonggeun Choe3, Chen Xing2, Xuewen Cao2, Jiang Bian4,*

    Energy Engineering, Vol.122, No.4, pp. 1287-1309, 2025, DOI:10.32604/ee.2025.060970 - 31 March 2025

    Abstract Extracted natural gas hydrate is a multi-phase and multi-component mixture, and its complex composition poses significant challenges for transmission and transportation, including phase changes following extraction and sediment deposition within the pipeline. This study examines the flow and heat transfer characteristics of hydrates in a riser, focusing on the multi-phase flow behavior of natural gas hydrate in the development riser. Additionally, the effects of hydrate flow and seawater temperature on heat exchange are analyzed by simulating the ambient temperature conditions of the South China Sea. The findings reveal that the increase in unit pressure drop… More >

  • Open Access

    ARTICLE

    Steam Methane Reforming (SMR) Combined with Ship Based Carbon Capture (SBCC) for an Efficient Blue Hydrogen Production on Board Liquefied Natural Gas (LNG) Carriers

    Ikram Belmehdi1,*, Boumedienne Beladjine1, Mohamed Djermouni1, Amina Sabeur1, Mohammed El Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 71-85, 2025, DOI:10.32604/fdmp.2024.058510 - 24 January 2025

    Abstract The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefied natural gas (LNG) carrier. This investigation focuses on integrating two distinct processes—steam methane reforming (SMR) and ship-based carbon capture (SBCC). The first refers to the common practice used to obtain hydrogen from methane (often derived from natural gas), where steam reacts with methane to produce hydrogen and carbon dioxide (CO2). The second refers to capturing the CO2 generated during the SMR process on board ships. By capturing and storing the carbon emissions, the process significantly reduces its… More >

  • Open Access

    PROCEEDINGS

    Leakage Diffusion and Monitor of Hydrogen-Blended Natural Gas Pipeline in Utility Tunnel

    Pengfei Duan1,*, Luling Li1, Jianhui Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012431

    Abstract The supply of hydrogen-blended natural gas to civil and industrial users can assist downstream firm to achieve carbon emission reduction, and ensure energy security as an alternative gas source. This application mode has been widely concerned by urban gas enterprises. This paper focuses on the leakage problem of hydrogen-blended pipelines in utility tunnel due to corrosion and other reasons. Using dimensional analysis method, a model experiment is designed to verify that the three-dimensional compressible fluid model coupled with transport equations can effectively simulate the concentration change of hydrogen-blended natural gas after leakage in the utility… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers

    Fayi Yan*, He Lu, Shijie Feng

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1493-1514, 2024, DOI:10.32604/fhmt.2024.055324 - 30 October 2024

    Abstract Helically coiled tube-in-tube (HCTT) heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency. HCTT heat exchangers play an important role in liquified natural gas (LNG) use and cold energy recovery. The heat transfer characteristics, pressure distribution, and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated. By comparing the simulation results of the computational model with existing experimental results, the effectiveness of the computational model is verified. The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related… More >

  • Open Access

    PROCEEDINGS

    Adaptability Study on the Equations of State for Calculating the Thermophysical Parameters of Hydrogen-Enriched Natural Gas

    Huijie Huang1, Jingfa Li2,*, Xu Sun1,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011026

    Abstract The blending of hydrogen into natural gas provides an optimal solution for large-scale hydrogen transport, utilizing existing natural gas pipelines for mixed conveyance. The thermophysical parameters of hydrogen-enriched natural gas (HENG) significantly influence the design and operation of gas transmission networks. Therefore, accurate prediction of the thermophysical parameters of HENG is crucial. However, due to the effects of hydrogen blending, the adaptability of commonly used equations of state (EoSs) to HENG remains uncertain, especially at high hydrogen blending ratios (HBRs). In this study, the accuracy of the EoSs of PR, BWRS, AGA8-92DC, and GERG-2008 is… More >

  • Open Access

    PROCEEDINGS

    Lifetime Prediction of Polyethylene Pipe Due to Aging Failure in Hydrogen-Blended Natural Gas Environment

    Dukui Zheng1, Jingfa Li1,*, Bo Yu1, Zhiqiang Huang1, Yindi Zhang1, Cuiwei Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011669

    Abstract In the low and medium pressure urban gas pipe network, transporting the hydrogen-blended natural gas through polyethylene pipe is an important means to realize the large-scale delivery and utilization of hydrogen-blended natural gas. However, due to the characteristics of polymer material, polyethylene pipes will experience aging phenomenon, which will lead to the deterioration of performance and eventually result in brittle damage and failure. Therefore, it is of great significance to analyze and predict the lifetime of polyethylene pipe due to the aging in the hydrogen-blended natural gas environment to ensure the safe transportation. In this… More >

Displaying 1-10 on page 1 of 40. Per Page