Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Numerical Investigation of Combined Production of Natural Gas Hydrate and Conventional Gas

    Hongzhi Xu1,2, Jian Wang1,3, Shuxia Li1,*, Fengrui Zhao1, Chengwen Wang1, Yang Guo1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 505-523, 2024, DOI:10.32604/fdmp.2023.030604

    Abstract Natural gas hydrate (NGH) is generally produced and accumulated together with the underlying conventional gas. Therefore, optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate. In this study, three types of models accounting for the coexistence of these gases are considered. Type A considers the upper hydrate-bearing layer (HBL) adjacent to the lower conventional gas layer (CGL); with the Type B a permeable interlayer exists between the upper HBL and the lower CGL; with the type C there is an impermeable interlayer between the… More >

  • Open Access

    ARTICLE

    COMBUSTION EFFICIENCY INSIDE CATALYTIC HONEYCOMB MONOLITH CHANNEL OF NATURAL GAS BURNER START-UP AND LOW CARBON ENERGY OF CATALYTIC COMBUSTION

    Shihong Zhang*,Zhihua Wang

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-6, 2013, DOI:10.5098/hmt.v4.2.3005

    Abstract This article discussed exhaust gas temperature and pollutant emissions characteristics of the combustion of rich natural gas-air mixtures in Pd metal based honeycomb monoliths burner during the period of start-up process. The burner needs to be ignited by gas phase combustion with the excessive air coefficient (a) at 1.3. The chemistry at work in the monoliths was then investigated using the stagnation point flow reactor or SPFR. The experimental results in catalytic monolith can be explained from SPFR. The exhaust gas temperature and pollutant emissions were measured by thermocouple K of diameter 0.5 and the analyser every 1 minute, respectively.… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO2 Injection

    Shasha Feng*, Yi Liao, Weixin Liu, Jianwen Dai, Mingying Xie, Li Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 275-292, 2024, DOI:10.32604/fdmp.2023.041825

    Abstract Asphaltene deposition is a significant problem during gas injection processes, as it can block the porous medium, the wellbore, and the involved facilities, significantly impacting reservoir productivity and ultimate oil recovery. Only a few studies have investigated the numerical modeling of this potential effect in porous media. This study focuses on asphaltene deposition due to natural gas and CO2 injection. Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model. The results indicate that the injection of natural gas exacerbates asphaltene deposition, leading to a significant reduction in permeability near… More > Graphic Abstract

    Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO<sub>2</sub> Injection

  • Open Access

    ARTICLE

    A Feasibility Study of Using Geothermal Energy to Enhance Natural Gas Production from Offshore Gas Hydrate Reservoirs by CO2 Swapping

    Md Nahin Mahmood*, Boyun Guo

    Energy Engineering, Vol.120, No.12, pp. 2707-2720, 2023, DOI:10.32604/ee.2023.042996

    Abstract The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate (NGH) reservoirs, primarily due to the low productivity of wells and the high operational costs involved. The present study offers an assessment of the feasibility of utilizing geothermal energy to augment the production of natural gas from offshore gas hydrate reservoirs through the implementation of the methane-CO2 swapping technique. The present study expands the research scope of the authors beyond their previous publication, which exclusively examined the generation of methane from marine gas hydrates. Specifically, the current investigation explores the feasibility of utilizing the… More >

  • Open Access

    ARTICLE

    STUDY ON THE CHARACTERISTICS OF CATALYTIC COMBUSTION FURNACE OF NATURAL GAS AND INFLUENCE OF ITS EXHAUST GAS TO PLANT

    Shihong Zhang* , Fangjing Jia, Rui Zhang

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-5, 2017, DOI:10.5098/hmt.8.4

    Abstract This article discussed the radiation and pollutant emissions characteristics of the catalytic combustion furnace based the combustion of lean natural gas-air mixtures in catalytic honeycomb monoliths and the influence of its exhaust gas on schefflera plants growth by means of theory and experiments. The radiation efficiency of the monolith alone varied from approximately 20% to 40%. The glazed tiles heated by the catalytic combustion furnace are more fine and glossy than that of conventional ones. Schefflera plants in experimental group in a greenhouse filling with catalytic combustion exhaust gas. On contrary, schefflera plants in control group stay in indoor environment.… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION ON CONDENSING FLOW OF WATER VAPOR OF WET NATURAL GAS INSIDE THE NOZZLE

    Rongge Xiaoa , Wenbo Jina,*, Shicong Hanb , Rui Lia , Xuewen Caoc

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.6

    Abstract Combines theories of gas dynamics, fluid dynamics and numerical heat transfer theory, the condensing flow characteristics of water vapor in wet natural gas within the Laval nozzle were studied. A mathematical model was developed to predict the spontaneous condensing phenomenon in the supersonic flows using the classical nucleation and droplet growth theories. The numerical approach is validated with the experimental data by using UDF and UDS modules in FLUENT software, which shows a good agreement between them, and showed that the mathematical model can better predict the parameter changes in the condensation process. The condensation characteristics of water vapor in… More >

  • Open Access

    ARTICLE

    SUPERSONIC CONDENSATION CHARACTERISTICS OF CO2 IN NATURAL GAS UNDER DIFFERENT TEMPERATURE CONDITIONS

    Huan Zhenga,*, Yuliang Mab , Huaping Meic , Xiaohong Xua , Xiguang Chend , Xunchen Caoe

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-6, 2018, DOI:10.5098/hmt.11.34

    Abstract The supersonic separator has proved to be an effective method to condense and separate CO2 from natural gas, and the inlet temperature plays a vital role on condensation characteristics of CO2 in the supersonic separator due to the instability temperature of wellhead natural gas. In this paper, the physical and mathematical models for the supersonic condensation process of CO2 in the natural gas were established on the basis of CO2 droplet surface tension, nucleation and growth model. The flow and condensation parameters were investigated under different temperature conditions. The results show that when the inlet gas pressure is 8.0 MPa,… More >

  • Open Access

    ARTICLE

    STUDY ON THE LIFETIME OF CATALYST IN CATALYTIC COMBUSTION FURNACE OF NATURAL GAS AND APPLICATIONS OF HEATING POTTERY

    Shihong Zhang* , Hui Yang

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-5, 2019, DOI:10.5098/hmt.12.6

    Abstract This article discussed the lifetime of catalyst on cost effect for catalytic combustion furnace and applications of pottery heated by catalytic combustion furnace in purification water. The time of start-up process rises with the increase of the number of ignition. The catalyst sintering was remarkable. By reducing the number of ignition and adjusting the temperature rise uniformly in the furnace, the efficient utilization of thermal energy could be realized to saving production cost and extending the lifetime of catalyst. With exquisite and even-textured surface the pottery had striking purification effect on water. The water purification material of this pottery was… More >

  • Open Access

    ARTICLE

    FLOW CHARACTERISTICS OF WET NATURAL GAS IN DIFFERENT THROTTLING DEVICES

    Xuewen Caoa,b,*, Qi Chua,b, Xiaodan Songa,b, Yuxuan Lia,b, Jiang Biana,b

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-9, 2019, DOI:10.5098/hmt.13.2

    Abstract Wet natural gas widely exists in the natural gas industry, and the selection of throttling devices plays an important role in wet natural gas transportation. In order to study the flow field characteristics of different throttling devices in wet natural gas pipelines, a set of Laval nozzles, orifice plates, and plate valves have been designed. The standard k-ε model was selected for numerical simulation. By changing inlet pressure, inlet temperature or volume fraction of water-liquid, the pressure field and temperature fields of different throttling devices were obtained, and the influence of the presence of a shockwave on the flow fields… More >

  • Open Access

    ARTICLE

    RESEARCH ON BUILDING GLAZED TILE OF FLY ASH ADDED BY RADIATION HEAT TREATMENT INSIDE CATALYTIC COMBUSTION FURNACE OF NATURAL GAS

    Shihong Zhang* , Xu Fan

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-6, 2020, DOI:10.5098/hmt.14.9

    Abstract This article discussed compressive strength, water absorption, thermal conductivity and Frost resistance of building glazed tile of fly ash added in order to solve the problem of shortage of raw materials in the production. According to the technology of catalytic combustion furnace, glazed tiles of fly ash added with pure solid texture and glamorous colors were obtained by radiation heat treatment. It also greatly reduced pollutant emissions. The suitable proportion is about 30% of fly ash from these tests and the molding pressure is 20MPa. The utilization of fly ash not only alleviates the environmental pollution, but also saves raw… More >

Displaying 1-10 on page 1 of 26. Per Page