Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (133)
  • Open Access

    REVIEW

    Enhancing Security in Large Language Models: A Comprehensive Review of Prompt Injection Attacks and Defenses

    Eleena Sarah Mathew*

    Journal on Artificial Intelligence, Vol.7, pp. 347-363, 2025, DOI:10.32604/jai.2025.069841 - 06 October 2025

    Abstract This review paper explores advanced methods to prompt Large Language Models (LLMs) into generating objectionable or unintended behaviors through adversarial prompt injection attacks. We examine a series of novel projects like HOUYI, Robustly Aligned LLM (RA-LLM), StruQ, and Virtual Prompt Injection that compel LLMs to produce affirmative responses to harmful queries. Several new benchmarks, such as PromptBench, AdvBench, AttackEval, INJECAGENT, and RobustnessSuite, have been created to evaluate the performance and resilience of LLMs against these adversarial attacks. Results show significant success rates in misleading models like Vicuna-7B, LLaMA-2-7B-Chat, GPT-3.5, and GPT-4. The review highlights limitations… More >

  • Open Access

    REVIEW

    Natural Language Processing with Transformer-Based Models: A Meta-Analysis

    Charles Munyao*, John Ndia

    Journal on Artificial Intelligence, Vol.7, pp. 329-346, 2025, DOI:10.32604/jai.2025.069226 - 22 September 2025

    Abstract The natural language processing (NLP) domain has witnessed significant advancements with the emergence of transformer-based models, which have reshaped the text understanding and generation landscape. While their capabilities are well recognized, there remains a limited systematic synthesis of how these models perform across tasks, scale efficiently, adapt to domains, and address ethical challenges. Therefore, the aim of this paper was to analyze the performance of transformer-based models across various NLP tasks, their scalability, domain adaptation, and the ethical implications of such models. This meta-analysis paper synthesizes findings from 25 peer-reviewed studies on NLP transformer-based models,… More >

  • Open Access

    ARTICLE

    GLMTopic: A Hybrid Chinese Topic Model Leveraging Large Language Models

    Weisi Chen1,*, Walayat Hussain2,*, Junjie Chen1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1559-1583, 2025, DOI:10.32604/cmc.2025.065916 - 29 August 2025

    Abstract Topic modeling is a fundamental technique of content analysis in natural language processing, widely applied in domains such as social sciences and finance. In the era of digital communication, social scientists increasingly rely on large-scale social media data to explore public discourse, collective behavior, and emerging social concerns. However, traditional models like Latent Dirichlet Allocation (LDA) and neural topic models like BERTopic struggle to capture deep semantic structures in short-text datasets, especially in complex non-English languages like Chinese. This paper presents Generative Language Model Topic (GLMTopic) a novel hybrid topic modeling framework leveraging the capabilities… More >

  • Open Access

    REVIEW

    Exploring the Effectiveness of Machine Learning and Deep Learning Algorithms for Sentiment Analysis: A Systematic Literature Review

    Jungpil Shin1,*, Wahidur Rahman2, Tanvir Ahmed2, Bakhtiar Mazrur2, Md. Mohsin Mia2, Romana Idress Ekfa2, Md. Sajib Rana2, Pankoo Kim3,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4105-4153, 2025, DOI:10.32604/cmc.2025.066910 - 30 July 2025

    Abstract Sentiment Analysis, a significant domain within Natural Language Processing (NLP), focuses on extracting and interpreting subjective information—such as emotions, opinions, and attitudes—from textual data. With the increasing volume of user-generated content on social media and digital platforms, sentiment analysis has become essential for deriving actionable insights across various sectors. This study presents a systematic literature review of sentiment analysis methodologies, encompassing traditional machine learning algorithms, lexicon-based approaches, and recent advancements in deep learning techniques. The review follows a structured protocol comprising three phases: planning, execution, and analysis/reporting. During the execution phase, 67 peer-reviewed articles were More >

  • Open Access

    ARTICLE

    Improving Fashion Sentiment Detection on X through Hybrid Transformers and RNNs

    Bandar Alotaibi1,*, Aljawhara Almutarie2, Shuaa Alotaibi3, Munif Alotaibi4

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4451-4467, 2025, DOI:10.32604/cmc.2025.066050 - 30 July 2025

    Abstract X (formerly known as Twitter) is one of the most prominent social media platforms, enabling users to share short messages (tweets) with the public or their followers. It serves various purposes, from real-time news dissemination and political discourse to trend spotting and consumer engagement. X has emerged as a key space for understanding shifting brand perceptions, consumer preferences, and product-related sentiment in the fashion industry. However, the platform’s informal, dynamic, and context-dependent language poses substantial challenges for sentiment analysis, mainly when attempting to detect sarcasm, slang, and nuanced emotional tones. This study introduces a hybrid… More >

  • Open Access

    ARTICLE

    Enhancing Arabic Sentiment Analysis with Pre-Trained CAMeLBERT: A Case Study on Noisy Texts

    Fay Aljomah, Lama Aldhafeeri, Maha Alfadel, Sultanh Alshahrani, Qaisar Abbas*, Sarah Alhumoud*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5317-5335, 2025, DOI:10.32604/cmc.2025.062478 - 30 July 2025

    Abstract Dialectal Arabic text classification (DA-TC) provides a mechanism for performing sentiment analysis on recent Arabic social media leading to many challenges owing to the natural morphology of the Arabic language and its wide range of dialect variations. The availability of annotated datasets is limited, and preprocessing of the noisy content is even more challenging, sometimes resulting in the removal of important cues of sentiment from the input. To overcome such problems, this study investigates the applicability of using transfer learning based on pre-trained transformer models to classify sentiment in Arabic texts with high accuracy. Specifically,… More >

  • Open Access

    REVIEW

    Large Language Model-Driven Knowledge Discovery for Designing Advanced Micro/Nano Electrocatalyst Materials

    Ying Shen1, Shichao Zhao1, Yanfei Lv1, Fei Chen1, Li Fu1,*, Hassan Karimi-Maleh2,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 1921-1950, 2025, DOI:10.32604/cmc.2025.067427 - 03 July 2025

    Abstract This review presents a comprehensive and forward-looking analysis of how Large Language Models (LLMs) are transforming knowledge discovery in the rational design of advanced micro/nano electrocatalyst materials. Electrocatalysis is central to sustainable energy and environmental technologies, but traditional catalyst discovery is often hindered by high complexity, fragmented knowledge, and inefficiencies. LLMs, particularly those based on Transformer architectures, offer unprecedented capabilities in extracting, synthesizing, and generating scientific knowledge from vast unstructured textual corpora. This work provides the first structured synthesis of how LLMs have been leveraged across various electrocatalysis tasks, including automated information extraction from literature,… More >

  • Open Access

    ARTICLE

    Chinese DeepSeek: Performance of Various Oversampling Techniques on Public Perceptions Using Natural Language Processing

    Anees Ara1, Muhammad Mujahid1, Amal Al-Rasheed2,*, Shaha Al-Otaibi2, Tanzila Saba1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2717-2731, 2025, DOI:10.32604/cmc.2025.065566 - 03 July 2025

    Abstract DeepSeek Chinese artificial intelligence (AI) open-source model, has gained a lot of attention due to its economical training and efficient inference. DeepSeek, a model trained on large-scale reinforcement learning without supervised fine-tuning as a preliminary step, demonstrates remarkable reasoning capabilities of performing a wide range of tasks. DeepSeek is a prominent AI-driven chatbot that assists individuals in learning and enhances responses by generating insightful solutions to inquiries. Users possess divergent viewpoints regarding advanced models like DeepSeek, posting both their merits and shortcomings across several social media platforms. This research presents a new framework for predicting… More >

  • Open Access

    ARTICLE

    Upholding Academic Integrity amidst Advanced Language Models: Evaluating BiLSTM Networks with GloVe Embeddings for Detecting AI-Generated Scientific Abstracts

    Lilia-Eliana Popescu-Apreutesei, Mihai-Sorin Iosupescu, Sabina Cristiana Necula, Vasile-Daniel Păvăloaia*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2605-2644, 2025, DOI:10.32604/cmc.2025.064747 - 03 July 2025

    Abstract The increasing fluency of advanced language models, such as GPT-3.5, GPT-4, and the recently introduced DeepSeek, challenges the ability to distinguish between human-authored and AI-generated academic writing. This situation is raising significant concerns regarding the integrity and authenticity of academic work. In light of the above, the current research evaluates the effectiveness of Bidirectional Long Short-Term Memory (BiLSTM) networks enhanced with pre-trained GloVe (Global Vectors for Word Representation) embeddings to detect AI-generated scientific abstracts drawn from the AI-GA (Artificial Intelligence Generated Abstracts) dataset. Two core BiLSTM variants were assessed: a single-layer approach and a dual-layer… More >

  • Open Access

    ARTICLE

    A Convolutional Neural Network Based Optical Character Recognition for Purely Handwritten Characters and Digits

    Syed Atir Raza1,2, Muhammad Shoaib Farooq1, Uzma Farooq3, Hanen Karamti 4, Tahir Khurshaid5,*, Imran Ashraf6,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3149-3173, 2025, DOI:10.32604/cmc.2025.063255 - 03 July 2025

    Abstract Urdu, a prominent subcontinental language, serves as a versatile means of communication. However, its handwritten expressions present challenges for optical character recognition (OCR). While various OCR techniques have been proposed, most of them focus on recognizing printed Urdu characters and digits. To the best of our knowledge, very little research has focused solely on Urdu pure handwriting recognition, and the results of such proposed methods are often inadequate. In this study, we introduce a novel approach to recognizing Urdu pure handwritten digits and characters using Convolutional Neural Networks (CNN). Our proposed method utilizes convolutional layers… More >

Displaying 11-20 on page 2 of 133. Per Page