Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    Two-Layer Information Granulation: Mapping-Equivalence Neighborhood Rough Set and Its Attribute Reduction

    Changshun Liu1, Yan Liu1, Jingjing Song1,*, Taihua Xu1,2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2059-2075, 2023, DOI:10.32604/iasc.2023.039592

    Abstract Attribute reduction, as one of the essential applications of the rough set, has attracted extensive attention from scholars. Information granulation is a key step of attribute reduction, and its efficiency has a significant impact on the overall efficiency of attribute reduction. The information granulation of the existing neighborhood rough set models is usually a single layer, and the construction of each information granule needs to search all the samples in the universe, which is inefficient. To fill such gap, a new neighborhood rough set model is proposed, which aims to improve the efficiency of attribute reduction by means of two-layer… More >

  • Open Access


    Fusing Supervised and Unsupervised Measures for Attribute Reduction

    Tianshun Xing, Jianjun Chen*, Taihua Xu, Yan Fan

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 561-581, 2023, DOI:10.32604/iasc.2023.037874

    Abstract It is well-known that attribute reduction is a crucial action of rough set. The significant characteristic of attribute reduction is that it can reduce the dimensions of data with clear semantic explanations. Normally, the learning performance of attributes in derived reduct is much more crucial. Since related measures of rough set dominate the whole process of identifying qualified attributes and deriving reduct, those measures may have a direct impact on the performance of selected attributes in reduct. However, most previous researches about attribute reduction take measures related to either supervised perspective or unsupervised perspective, which are insufficient to identify attributes… More >

  • Open Access


    Multi-Span and Multiple Relevant Time Series Prediction Based on Neighborhood Rough Set

    Xiaoli Li1, Shuailing Zhou1, Zixu An2,*, Zhenlong Du1

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3765-3780, 2021, DOI:10.32604/cmc.2021.012422

    Abstract Rough set theory has been widely researched for time series prediction problems such as rainfall runoff. Accurate forecasting of rainfall runoff is a long standing but still mostly significant problem for water resource planning and management, reservoir and river regulation. Most research is focused on constructing the better model for improving prediction accuracy. In this paper, a rainfall runoff forecast model based on the variable-precision fuzzy neighborhood rough set (VPFNRS) is constructed to predict Watershed runoff value. Fuzzy neighborhood rough set define the fuzzy decision of a sample by using the concept of fuzzy neighborhood. The fuzzy neighborhood rough set… More >

Displaying 1-10 on page 1 of 3. Per Page