Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (348)
  • Open Access

    ARTICLE

    Predicting Dementia Risk Factors Based on Feature Selection and Neural Networks

    Ashir Javeed1,2, Ana Luiza Dallora2, Johan Sanmartin Berglund2,*, Arif Ali4, Peter Anderberg2,3, Liaqat Ali5

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2491-2508, 2023, DOI:10.32604/cmc.2023.033783

    Abstract Dementia is a disorder with high societal impact and severe consequences for its patients who suffer from a progressive cognitive decline that leads to increased morbidity, mortality, and disabilities. Since there is a consensus that dementia is a multifactorial disorder, which portrays changes in the brain of the affected individual as early as 15 years before its onset, prediction models that aim at its early detection and risk identification should consider these characteristics. This study aims at presenting a novel method for ten years prediction of dementia using on multifactorial data, which comprised 75 variables.… More >

  • Open Access

    ARTICLE

    A Low-Power 12-Bit SAR ADC for Analog Convolutional Kernel of Mixed-Signal CNN Accelerator

    Jungyeon Lee1, Malik Summair Asghar1,2, HyungWon Kim1,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4357-4375, 2023, DOI:10.32604/cmc.2023.031372

    Abstract As deep learning techniques such as Convolutional Neural Networks (CNNs) are widely adopted, the complexity of CNNs is rapidly increasing due to the growing demand for CNN accelerator system-on-chip (SoC). Although conventional CNN accelerators can reduce the computational time of learning and inference tasks, they tend to occupy large chip areas due to many multiply-and-accumulate (MAC) operators when implemented in complex digital circuits, incurring excessive power consumption. To overcome these drawbacks, this work implements an analog convolutional filter consisting of an analog multiply-and-accumulate arithmetic circuit along with an analog-to-digital converter (ADC). This paper introduces the… More >

  • Open Access

    ARTICLE

    An Endogenous Feedback and Entropy Analysis in Machine Learning Model for Stock’s Return Forecast

    Edson Vinicius Pontes Bastos1,*, Jorge Junio Moreira Antunes2, Lino Guimarães Marujo1, Peter Fernandes Wanke2, Roberto Ivo da Rocha Lima Filho1

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3175-3190, 2023, DOI:10.32604/iasc.2023.034582

    Abstract Stock markets exhibit Brownian movement with random, non-linear, uncertain, evolutionary, non-parametric, nebulous, chaotic characteristics and dynamism with a high degree of complexity. Developing an algorithm to predict returns for decision-making is a challenging goal. In addition, the choice of variables that will serve as input to the model represents a non-triviality, since it is possible to observe endogeneity problems between the predictor and the predicted variables. Thus, the goal is to analyze the endogenous origin of the stock return prediction model based on technical indicators. For this, we structure a feed-forward neural network. We evaluate More >

  • Open Access

    ARTICLE

    An Improved Time Feedforward Connections Recurrent Neural Networks

    Jin Wang1,2, Yongsong Zou1, Se-Jung Lim3,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2743-2755, 2023, DOI:10.32604/iasc.2023.033869

    Abstract Recurrent Neural Networks (RNNs) have been widely applied to deal with temporal problems, such as flood forecasting and financial data processing. On the one hand, traditional RNNs models amplify the gradient issue due to the strict time serial dependency, making it difficult to realize a long-term memory function. On the other hand, RNNs cells are highly complex, which will significantly increase computational complexity and cause waste of computational resources during model training. In this paper, an improved Time Feedforward Connections Recurrent Neural Networks (TFC-RNNs) model was first proposed to address the gradient issue. A parallel… More >

  • Open Access

    ARTICLE

    Accurate Phase Detection for ZigBee Using Artificial Neural Network

    Ali Alqahtani1, Abdulaziz A. Alsulami2,*, Saeed Alahmari3, Mesfer Alrizq4

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2505-2518, 2023, DOI:10.32604/iasc.2023.033243

    Abstract The IEEE802.15.4 standard has been widely used in modern industry due to its several benefits for stability, scalability, and enhancement of wireless mesh networking. This standard uses a physical layer of binary phase-shift keying (BPSK) modulation and can be operated with two frequency bands, 868 and 915 MHz. The frequency noise could interfere with the BPSK signal, which causes distortion to the signal before its arrival at receiver. Therefore, filtering the BPSK signal from noise is essential to ensure carrying the signal from the sender to the receiver with less error. Therefore, removing signal noise… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm

    D. Vidyabharathi1,*, V. Mohanraj2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2559-2573, 2023, DOI:10.32604/iasc.2023.032255

    Abstract For training the present Neural Network (NN) models, the standard technique is to utilize decaying Learning Rates (LR). While the majority of these techniques commence with a large LR, they will decay multiple times over time. Decaying has been proved to enhance generalization as well as optimization. Other parameters, such as the network’s size, the number of hidden layers, dropouts to avoid overfitting, batch size, and so on, are solely based on heuristics. This work has proposed Adaptive Teaching Learning Based (ATLB) Heuristic to identify the optimal hyperparameters for diverse networks. Here we consider three More >

  • Open Access

    ARTICLE

    Adaptive Backdoor Attack against Deep Neural Networks

    Honglu He, Zhiying Zhu, Xinpeng Zhang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2617-2633, 2023, DOI:10.32604/cmes.2023.025923

    Abstract In recent years, the number of parameters of deep neural networks (DNNs) has been increasing rapidly. The training of DNNs is typically computation-intensive. As a result, many users leverage cloud computing and outsource their training procedures. Outsourcing computation results in a potential risk called backdoor attack, in which a welltrained DNN would perform abnormally on inputs with a certain trigger. Backdoor attacks can also be classified as attacks that exploit fake images. However, most backdoor attacks design a uniform trigger for all images, which can be easily detected and removed. In this paper, we propose… More >

  • Open Access

    ARTICLE

    Crack Segmentation Based on Fusing Multi-Scale Wavelet and Spatial-Channel Attention

    Peng Geng*, Ji Lu, Hongtao Ma, Guiyi Yang

    Structural Durability & Health Monitoring, Vol.17, No.1, pp. 1-22, 2023, DOI:10.32604/sdhm.2023.018632

    Abstract Accurate and reliable crack segmentation is a challenge and meaningful task. In this article, aiming at the characteristics of cracks on the concrete images, the intensity frequency information of source images which is obtained by Discrete Wavelet Transform (DWT) is fed into deep learning-based networks to enhance the ability of network on crack segmentation. To well integrate frequency information into network an effective and novel DWTA module based on the DWT and scSE attention mechanism is proposed. The semantic information of cracks is enhanced and the irrelevant information is suppressed by DWTA module. And the… More >

  • Open Access

    ARTICLE

    Improving Performance of Recurrent Neural Networks Using Simulated Annealing for Vertical Wind Speed Estimation

    Shafiqur Rehman1,*, Hilal H. Nuha2, Ali Al Shaikhi3, Satria Akbar2, Mohamed Mohandes1,3

    Energy Engineering, Vol.120, No.4, pp. 775-789, 2023, DOI:10.32604/ee.2023.026185

    Abstract An accurate vertical wind speed (WS) data estimation is required to determine the potential for wind farm installation. In general, the vertical extrapolation of WS at different heights must consider different parameters from different locations, such as wind shear coefficient, roughness length, and atmospheric conditions. The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks (RNN) model to estimate WS at different heights using measurements from lower heights. The first optimization of the RNN is performed to minimize a differentiable cost function, namely, mean squared error (MSE),… More >

  • Open Access

    ARTICLE

    MayGAN: Mayfly Optimization with Generative Adversarial Network-Based Deep Learning Method to Classify Leukemia Form Blood Smear Images

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2039-2058, 2023, DOI:10.32604/csse.2023.036985

    Abstract Leukemia, often called blood cancer, is a disease that primarily affects white blood cells (WBCs), which harms a person’s tissues and plasma. This condition may be fatal when if it is not diagnosed and recognized at an early stage. The physical technique and lab procedures for Leukaemia identification are considered time-consuming. It is crucial to use a quick and unexpected way to identify different forms of Leukaemia. Timely screening of the morphologies of immature cells is essential for reducing the severity of the disease and reducing the number of people who require treatment. Various deep-learning… More >

Displaying 81-90 on page 9 of 348. Per Page