Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    A Probabilistic Approach to Hazard Mapping Based on Computer Simulations. An Example for Lava Flows at Mount Etna

    R. Rongo1,2, D. D’Ambrosio1,2, G. Iovine2,3, F. Lucà4, V. Lupiano5, V.P.Boñgolan6, W. Spataro1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.2, pp. 105-130, 2015, DOI:10.3970/cmes.2015.109.105

    Abstract Determining sectors that could be affected by lava flows in volcanic areas is essential for risk mitigation purposes. Traditionally, when adopting methods based on probabilistic numerical simulations, the hazard is assessed by analysing a huge set of simulations of hypothetical events, each characterized by a distinct probability of occurrence based on statistics of historical events. If lateral or eccentric eruptions are also taken into account, simulated lava flows usually start from the nodes of regular grids of potential vents, uniformly covering the study area. In this study, an alternative approach to evaluate flow-type hazard, based on a nonuniform grid of… More >

  • Open Access

    ARTICLE

    Mechanical Analyses of Casings in Boreholes, under Non-uniform Remote Crustal Stress Fields: Analytical & Numerical Methods

    Fei Yin1, Deli Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.1, pp. 25-38, 2012, DOI:10.3970/cmes.2012.089.025

    Abstract The methods to design the casings used in oilfields, are currently based on the assumptions that the remote crustal-stress-field is axially symmetric, in plane strain. However, most of the failures of the casings are caused by non-uniform and asymmetric far-field crustal stresses, so that it is necessary for a proper design of the casings, to investigate and understand the casing's behavior under non-uniform far-field crustal stresses. A mechanical model is first established for the system, consisting of the casing and formation, by using the plane strain theory of linear elasticity. The non-uniform crustal stress is resolved into a uniform stress… More >

  • Open Access

    ARTICLE

    Interaction of Two Parallel Short Fibers in the Matrix at Loss of Stability

    A. N. Guz, V. A. Dekret1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 165-170, 2006, DOI:10.3970/cmes.2006.013.165

    Abstract Stability problem of composite material reinforced by two parallel short fibers is solved. The problem is formulated with application of equations of linearized three-dimensional theory of stability. The composite is modeled as piecewise-homogeneous medium. The influence of geometrical and mechanical parameters of the material on critical strain is investigated. More >

  • Open Access

    ARTICLE

    Exact Solutions for the Free Vibration of Extensional Curved Non-uniform Timoshenko Beams

    Sen Yung Lee1, Jyh Shyang Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.40, No.2, pp. 133-154, 2009, DOI:10.3970/cmes.2009.040.133

    Abstract The three coupled governing differential equations for the in-plane vibrations of curved non-uniform Timoshenko beams are derived via the Hamilton's principle. Three physical parameters are introduced to simplify the analysis. By eliminating all the terms with the axial displacement parameter, then reducing the order of differential operator acting on the flexural displacement parameter, one uncouples the three governing characteristic differential equations with variable coefficients and reduces them into a sixth-order ordinary differential equation with variable coefficients in term of the angle of the rotation due to bending for the first time. The explicit relations between the axial and the flexural… More >

  • Open Access

    ARTICLE

    Free Vibration of Non-Uniform Euler-Bernoulli Beams by the Adomian Modified Decomposition Method

    Hsin-Yi Lai1, C. K. Chen1,2, Jung-Chang Hsu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.34, No.1, pp. 87-116, 2008, DOI:10.3970/cmes.2008.034.087

    Abstract An innovative solver for the free vibration of an elastically restrained non-uniform Euler-Bernoulli beam with tip mass of rotatory inertia and eccentricity resting on an elastic foundation and subjected to an axial load is proposed. The technique we have used is based on applying the Adomian modified decomposition method (AMDM) to our vibration problems. By using this method, any$i$th natural frequencies can be obtained one at a time and some numerical results are given to illustrate the influence of the physical parameters on the natural frequencies of the dynamic system. The computed results agree well with those analytical and numerical… More >

  • Open Access

    ARTICLE

    Weight Function Shape Parameter Optimization in Meshless Methods for Non-uniform Grids

    J. Perko1, B. Šarler2

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.1, pp. 55-68, 2007, DOI:10.3970/cmes.2007.019.055

    Abstract This work introduces a procedure for automated determination of weight function free parameters in moving least squares (MLS) based meshless methods for non-uniform grids. The meshless method used in present work is Diffuse Approximate Method (DAM). The DAM is structured in 2D with the one or two parameter Gaussian weigh function, 6 polynomial basis and 9 noded domain of influence. The procedure consists of three main elements. The first is definition of the reference quality function which measures the difference between the MLS approximation on non-uniform and hypothetic uniform node arrangements. The second is the construction of the object function… More >

  • Open Access

    ARTICLE

    Non-uniform Hardening Constitutive Model for Compressible Orthotropic Materials with Application to Sandwich Plate Cores

    Zhenyu Xue1, Ashkan Vaziri1, John W. Hutchinson1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.1, pp. 79-96, 2005, DOI:10.3970/cmes.2005.010.079

    Abstract A constitutive model for the elastic-plastic behavior of plastically compressible orthotropic materials is proposed based on an ellipsoidal yield surface with evolving ellipticity to accommodate non-uniform hardening or softening associated with stressing in different directions. The model incorporates rate-dependence arising from material rate-dependence and micro-inertial effects. The basic inputs are the stress-strain responses under the six fundamental stress histories in the orthotropic axes. Special limits of the model include classical isotropic hardening theory, the Hill model for incompressible orthotropic solids, and the Deshpande-Fleck model for highly porous isotropic foam metals. A primary motivation is application to metal core structure in… More >

  • Open Access

    ARTICLE

    MHD Natural Convection in a Nanofluid-filled Enclosure with Non-uniform Heating on Both Side Walls

    Imen Mejri1,2, Ahmed Mahmoudi1, Mohamed Ammar Abbassi1, Ahmed Omri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.1, pp. 83-114, 2014, DOI:10.3970/fdmp.2014.010.083

    Abstract This study examines natural convection in a square enclosure filled with a water-Al2O3 nanofluid and subjected to a magnetic field. The side walls of the cavity have spatially varying sinusoidal temperature distributions. The horizontal walls are adiabatic. A Lattice Boltzmann method (LBM) is applied to solve the governing equations for fluid velocity and temperature. The following parameters and related ranges are considered: Rayleigh number of the base fluid, from Ra=103 to 106, Hartmann number from Ha=0 to 90, phase deviation (γ =0, π/4, π/2, 3π/4 and π) and solid volume fraction of the nanoparticles between ø = 0 and 6%.… More >

  • Open Access

    ARTICLE

    Exact Solutions and Mode Transition for Out-of-Plane Vibrations of Nonuniform Beams with Variable Curvature

    Sen-Yung Lee1, Shueei-Muh Lin2,3, Kai-Ping Chang1

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 1-19, 2016, DOI:10.3970/cmc.2016.051.001

    Abstract The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton's principle. These equations are expressed in terms of flexural and torsional displacements simultaneously. In this study, the analytical method is proposed. Firstly, two physical parameters are introduced to simplify the analysis. One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements. Based on the relation, the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms… More >

  • Open Access

    ARTICLE

    Orthogonal Tapered Beam Functions in the Study of Free Vibrations for Non-uniform Isotropic Rectangular Plates

    M.F. Liu1

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 97-128, 2011, DOI:10.3970/cmc.2011.022.097

    Abstract A new invented Orthogonal Tapered Beam Functions (OTBFs) have been introduced in this paper and used in accordance with the Rayleigh-Ritz method to determine the natural frequencies and mode shapes of the non-uniform rectangular isotropic plates with varying thickness in one or two directions. The generation of the OTBFs is based on the static solution of a one-dimensional beam problem subjected to constant applied load, and then extends to an orthogonal or orthonomal infinite set of admissible functions by performing the three-term recurrence scheme. A wide range of non-uniform rectangular plate whose domain is referenced by a so-called truncation factor… More >

Displaying 31-40 on page 4 of 40. Per Page