Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (67)
  • Open Access

    ARTICLE

    Numerical Modelling of Oblique Wave Interaction with Dual Curved-LEG Pontoon Floating Breakwaters

    Jothika Palanisamy1, Chandru Muthusamy1,*, Higinio Ramos2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2017-2038, 2025, DOI:10.32604/cmes.2025.071958 - 26 November 2025

    Abstract This study investigates the performance of dual curved-leg pontoon floating breakwaters in finite water depth under the assumption of linear wave theory. The analysis is carried out for four different models of curved-leg geometries, which are combinations of convex and concave shapes. The models are classified as follows. Model-1: Seaside and leeside face concave, Model-2: Seaside and leeside face convex, Model-3: Seaside face convex and leeside face concave, and Model-4: Seaside face concave and leeside face convex. The Boundary Element Method is utilized in order to find a solution to the associated boundary value problem.… More >

  • Open Access

    ARTICLE

    Numerical Modeling of Bubble-Particle Attachment in a Volume-of-Fluid Framework

    Hojun Moon, Donghyun You*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 367-390, 2025, DOI:10.32604/cmes.2025.071648 - 30 October 2025

    Abstract A numerical method is presented to simulate bubble–particle interaction phenomena in particle-laden flows. The bubble surface is represented in an Eulerian framework by a volume-of-fluid (VOF) method, while particle motions are predicted in a Lagrangian framework. Different frameworks for describing bubble surfaces and particles make it difficult to predict the exact locations of collisions between bubbles and particles. An effective bubble, defined as having a larger diameter than the actual bubble represented by the VOF method, is introduced to predict the collision locations. Once the collision locations are determined, the attachment of particles to the More >

  • Open Access

    ARTICLE

    Numerical Modelling of CO2 Plume Evolution and Dissolution in a Stratified Saline Aquifer

    Bohao Wu*, Xiuqi Zhang, Haoheng Liu, Yulong Ji

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2359-2387, 2025, DOI:10.32604/fdmp.2025.067651 - 30 October 2025

    Abstract Geological sequestration of carbon dioxide (CO2) entails the long-term storage of captured emissions from CCUS (Carbon Capture, Utilization, and Storage) facilities in deep saline aquifers to mitigate greenhouse gas accumulation. Among various trapping mechanisms, dissolution trapping is particularly effective in enhancing storage security. However, the stratified structure of saline aquifers plays a crucial role in controlling the efficiency of CO2 dissolution into the resident brine. In this study, a two-dimensional numerical model of a stratified saline aquifer is developed, integrating both two-phase flow and mass transfer dynamics. The model captures the temporal evolution of gas saturation,… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Air-Assisted Heating for Cold-Start in Cathode-Open Proton Exchange Membrane Fuel Cells

    Wei Shi1,2, Shusheng Xiong1,2,3,*, Wei Li2,3, Kai Meng4, Qingsheng Liu4

    Energy Engineering, Vol.122, No.9, pp. 3507-3523, 2025, DOI:10.32604/ee.2025.065579 - 26 August 2025

    Abstract In the realm of all-electric aircraft research, the integration of cathode-open proton exchange membrane fuel cells (PEMFC) with lithium batteries as a hybrid power source for small to medium-sized unmanned aerial vehicles (UAVs) has garnered significant attention. The PEMFC, serving as the primary energy supply, markedly extends the UAV’s operational endurance. However, due to payload limitations and spatial constraints in the airframe layout of UAVs, the stack requires customized adaptation. Moreover, the implementation of auxiliary systems to facilitate cold starts of the PEMFC under low-temperature conditions is not feasible. Relying solely on thermal insulation measures… More >

  • Open Access

    ARTICLE

    Thermal Behavior of a LFP Battery for Residential Applications: Development of a Multi-Physical Numerical Model

    Michela Costa1,*, Adolfo Palombo2, Andrea Ricci2, Ugo Sorge3

    Energy Engineering, Vol.122, No.5, pp. 1629-1643, 2025, DOI:10.32604/ee.2025.062613 - 25 April 2025

    Abstract Effective thermal management is paramount for successfully deploying lithium-ion batteries in residential settings as storage systems for the exploitation of renewable sources. Uncontrolled temperature increases within battery packs can lead to critical issues such as cell overheating, potentially culminating in thermal runaway events and, in extreme cases, leading to fire or explosions. This work presents a comprehensive numerical thermal model of a battery pack made of prototype pouch cells based on lithium ferrophosphate (LFP) chemistry. The multi-physical model is specifically developed to investigate real-world operating scenarios and to assess safety considerations. The considered energy storage… More >

  • Open Access

    PROCEEDINGS

    Numerical Modeling for Crack Propagation Based on a Multifunctional Super Singular Element

    Xuecheng Ping1,2,*, Congman Wang1,2, Xingxing Wang1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011724

    Abstract The traditional finite element method (FEM) often requires a large number of refined meshes to analyze the mechanical behavior of geometric discontinuities, its computational efficiency and convergence speed are affected. A FEM for crack propagation based on the combination of an adaptive remeshing technique with the multifunctional super singular element (MSSE) at the crack tip is proposed for the fracture process simulation of two-dimensional (2D) materials. The adaptive FEM for crack propagation divides the crack tip neighborhood into the MSSE region, the protection element (PE) region and the background element (BE) region. The MSSE is… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating

    O. N. Goncharova1, V. B. Bekezhanova2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1667-1686, 2024, DOI:10.32604/fdmp.2024.047959 - 23 July 2024

    Abstract The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied. The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed. In particular, the cases of local heating from below and distributed thermal load from the lateral walls are considered. The simulation is carried out within the frame of a two-sided evaporative convection model based on the Boussinesq approximation. A benzine–air system is considered as reference system. The variation in time of the contact angle is described for both heating More > Graphic Abstract

    Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating

  • Open Access

    ARTICLE

    Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study

    Farman Saifi1,*, Mohd Javaid1, Abid Haleem1, S. M. Anas2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2747-2777, 2024, DOI:10.32604/cmes.2024.051490 - 08 July 2024

    Abstract Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infrastructure systems and networks capable of withstanding blast loading. Initially centered on high-profile facilities such as embassies and petrochemical plants, this concern now extends to a wider array of infrastructures and facilities. Engineers and scholars increasingly prioritize structural safety against explosions, particularly to prevent disproportionate collapse and damage to nearby structures. Urbanization has further amplified the reliance on oil and gas pipelines, making them vital for urban life and prime targets for terrorist activities. Consequently, there is a growing imperative for computational… More >

  • Open Access

    ARTICLE

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

    Lisheng Luo1,*, Xinran Xie1, Yongqiang Zhang1, Xiaofeng Zhang2, Xinyue Cui1

    Journal of Renewable Materials, Vol.11, No.2, pp. 791-809, 2023, DOI:10.32604/jrm.2022.022539 - 22 September 2022

    Abstract Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects, which usually depends on empirical parameters. There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage, and consequently, the failure of such glulam beams cannot be predicted effectively. To address these issues, an analytical method considering material nonlinearity was proposed for glulam beams, and the calculating equations of deflection and shear stress distribution for different failure modes were established. The proposed method was verified by experiments and More > Graphic Abstract

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

  • Open Access

    ARTICLE

    Numerical Modelling of Drying Induced Cracks in Wood Discs Using the Extended Finite Element Method

    Zongying Fu1, Yongdong Zhou1, Tingguo Yan2, Yun Lu1,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 93-102, 2023, DOI:10.32604/jrm.2023.021808 - 10 August 2022

    Abstract Drying crack is a common phenomenon occurring during moisture discharge from wood, reducing efficient wood utilization. Drying crack is primarily caused by drying stress, and the reasonable methods for determining drying stress are sparse. In this study, the initiation and propagation of cracks during wood discs drying were simulated using the extended finite element method (XFEM). The distribution of drying stress and displacement was analyzed at different crack conditions based on the simulation results. This study aimed to solve the problem of the limitation of drying stress testing methods and provide a new idea for More >

Displaying 1-10 on page 1 of 67. Per Page