Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (195)
  • Open Access

    ARTICLE

    Lightweight YOLOv5 with ShuffleNetV2 for Rice Disease Detection in Edge Computing

    Qingtao Meng, Sang-Hyun Lee*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069970 - 10 November 2025

    Abstract This study proposes a lightweight rice disease detection model optimized for edge computing environments. The goal is to enhance the You Only Look Once (YOLO) v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency. To this end, a total of 3234 high-resolution images (2400 × 1080) were collected from three major rice diseases Rice Blast, Bacterial Blight, and Brown Spot—frequently found in actual rice cultivation fields. These images served as the training dataset. The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Toolkit Inspection: Object Detection and Segmentation in Assembly Lines

    Arvind Mukundan1,2, Riya Karmakar1, Devansh Gupta3, Hsiang-Chen Wang1,4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069646 - 10 November 2025

    Abstract Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0. Manual inspection of products on assembly lines remains inefficient, prone to errors and lacks consistency, emphasizing the need for a reliable and automated inspection system. Leveraging both object detection and image segmentation approaches, this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning (DL) models. Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images… More >

  • Open Access

    ARTICLE

    EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture

    Zhiyong Deng1, Yanchen Ye2, Jiangling Guo1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069090 - 10 November 2025

    Abstract With the rapid expansion of drone applications, accurate detection of objects in aerial imagery has become crucial for intelligent transportation, urban management, and emergency rescue missions. However, existing methods face numerous challenges in practical deployment, including scale variation handling, feature degradation, and complex backgrounds. To address these issues, we propose Edge-enhanced and Detail-Capturing You Only Look Once (EHDC-YOLO), a novel framework for object detection in Unmanned Aerial Vehicle (UAV) imagery. Based on the You Only Look Once version 11 nano (YOLOv11n) baseline, EHDC-YOLO systematically introduces several architectural enhancements: (1) a Multi-Scale Edge Enhancement (MSEE) module… More >

  • Open Access

    ARTICLE

    YOLO-SDW: Traffic Sign Detection Algorithm Based on YOLOv8s Skip Connection and Dynamic Convolution

    Qing Guo1,2, Juwei Zhang1,2,3,*, Bingyi Ren1,2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069053 - 10 November 2025

    Abstract Traffic sign detection is an important part of autonomous driving, and its recognition accuracy and speed are directly related to road traffic safety. Although convolutional neural networks (CNNs) have made certain breakthroughs in this field, in the face of complex scenes, such as image blur and target occlusion, the traffic sign detection continues to exhibit limited accuracy, accompanied by false positives and missed detections. To address the above problems, a traffic sign detection algorithm, You Only Look Once-based Skip Dynamic Way (YOLO-SDW) based on You Only Look Once version 8 small (YOLOv8s), is proposed. Firstly,… More >

  • Open Access

    ARTICLE

    FMCSNet: Mobile Devices-Oriented Lightweight Multi-Scale Object Detection via Fast Multi-Scale Channel Shuffling Network Model

    Lijuan Huang1, Xianyi Liu2, Jinping Liu2,*, Pengfei Xu2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068818 - 10 November 2025

    Abstract The ubiquity of mobile devices has driven advancements in mobile object detection. However, challenges in multi-scale object detection in open, complex environments persist due to limited computational resources. Traditional approaches like network compression, quantization, and lightweight design often sacrifice accuracy or feature representation robustness. This article introduces the Fast Multi-scale Channel Shuffling Network (FMCSNet), a novel lightweight detection model optimized for mobile devices. FMCSNet integrates a fully convolutional Multilayer Perceptron (MLP) module, offering global perception without significantly increasing parameters, effectively bridging the gap between CNNs and Vision Transformers. FMCSNet achieves a delicate balance between computation… More >

  • Open Access

    ARTICLE

    The Research on Low-Light Autonomous Driving Object Detection Method

    Jianhua Yang*, Zhiwei Lv, Changling Huo

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068442 - 10 November 2025

    Abstract Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing, this paper proposes a YOLO-LKSDS automatic driving detection model. Firstly, the Contrast-Limited Adaptive Histogram Equalisation (CLAHE) image enhancement algorithm is improved to increase the image contrast and enhance the detailed features of the target; then, on the basis of the YOLOv5 model, the Kmeans++ clustering algorithm is introduced to obtain a suitable anchor frame, and SPPELAN spatial pyramid pooling is improved to enhance the accuracy and robustness of the model for multi-scale target… More >

  • Open Access

    ARTICLE

    Lightweight Small Defect Detection with YOLOv8 Using Cascaded Multi-Receptive Fields and Enhanced Detection Heads

    Shengran Zhao, Zhensong Li*, Xiaotan Wei, Yutong Wang, Kai Zhao

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-14, 2026, DOI:10.32604/cmc.2025.068138 - 10 November 2025

    Abstract In printed circuit board (PCB) manufacturing, surface defects can significantly affect product quality. To address the performance degradation, high false detection rates, and missed detections caused by complex backgrounds in current intelligent inspection algorithms, this paper proposes CG-YOLOv8, a lightweight and improved model based on YOLOv8n for PCB surface defect detection. The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy, thereby enhancing the capability of identifying diverse defects under complex conditions. Specifically, a cascaded multi-receptive field (CMRF) module is adopted to replace the SPPF module… More >

  • Open Access

    ARTICLE

    Improved YOLO11 for Maglev Train Foreign Object Detection

    Qinzhen Fang1,2, Dongliang Peng1,2, Lu Zeng1,2,*, Zixuan Jiang1,2

    Journal on Artificial Intelligence, Vol.7, pp. 469-484, 2025, DOI:10.32604/jai.2025.073016 - 06 November 2025

    Abstract To address the issues of small target miss detection, false positives in complex scenarios, and insufficient real-time performance in maglev train foreign object intrusion detection, this paper proposes a multi-module fusion improvement algorithm, YOLO11-FADA (Fusion of Augmented Features and Dynamic Attention), based on YOLO11. The model achieves collaborative optimization through three key modules: The Local Feature Augmentation Module (LFAM) enhances small target features and mitigates feature loss during down-sampling through multi-scale feature parallel extraction and attention fusion. The Dynamically Tuned Self-Attention (DTSA) module introduces learnable parameters to adjust attention weights dynamically, and, in combination with More >

  • Open Access

    ARTICLE

    A Lightweight and Optimized YOLO-Lite Model for Camellia oleifera Leaf Disease Recognition

    Qiang Peng1,2, Jia-Yu Yang1, Xu-Yu Xiang1,*

    Journal on Artificial Intelligence, Vol.7, pp. 437-450, 2025, DOI:10.32604/jai.2025.072332 - 20 October 2025

    Abstract Camellia oleifera is one of the four largest oil tree species in the world, and also an important economic crop in China, which has overwhelming economic benefits. However, Camellia oleifera is invaded by various diseases during its growth process, which leads to yield reduction and profit damage. To address this problem and ensure the healthy growth of Camellia oleifera, the purpose of this study is to apply the lightweight network to the identification and detection of camellia oleifolia leaf disease. The attention mechanism was combined for highlighting the local features and improve the attention of the model to the More >

  • Open Access

    ARTICLE

    Towards a Real-Time Indoor Object Detection for Visually Impaired Users Using Raspberry Pi 4 and YOLOv11: A Feasibility Study

    Ayman Noor1,2, Hanan Almukhalfi1,2, Arthur Souza2,3, Talal H. Noor1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3085-3111, 2025, DOI:10.32604/cmes.2025.068393 - 30 September 2025

    Abstract People with visual impairments face substantial navigation difficulties in residential and unfamiliar indoor spaces. Neither canes nor verbal navigation systems possess adequate features to deliver real-time spatial awareness to users. This research work represents a feasibility study for the wearable IoT-based indoor object detection assistant system architecture that employs a real-time indoor object detection approach to help visually impaired users recognize indoor objects. The system architecture includes four main layers: Wearable Internet of Things (IoT), Network, Cloud, and Indoor Object Detection Layers. The wearable hardware prototype is assembled using a Raspberry Pi 4, while the… More >

Displaying 1-10 on page 1 of 195. Per Page