Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (165)
  • Open Access

    ARTICLE

    Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer

    Changfeng Feng1, Chunping Wang2, Dongdong Zhang1, Renke Kou1, Qiang Fu1,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3993-4013, 2024, DOI:10.32604/cmc.2024.048351 - 26 March 2024

    Abstract Transformer-based models have facilitated significant advances in object detection. However, their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle (UAV) imagery. Addressing these limitations, we propose a hybrid transformer-based detector, H-DETR, and enhance it for dense small objects, leading to an accurate and efficient model. Firstly, we introduce a hybrid transformer encoder, which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently. Furthermore, we propose two novel strategies to enhance detection performance without incurring additional inference… More >

  • Open Access

    REVIEW

    A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography

    Usman Khan1, Muhammad Khalid Khan1, Muhammad Ayub Latif1, Muhammad Naveed1,2,*, Muhammad Mansoor Alam2,3,4, Salman A. Khan1, Mazliham Mohd Su’ud2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2967-3000, 2024, DOI:10.32604/cmc.2024.045101 - 26 March 2024

    Abstract Recently, there has been a notable surge of interest in scientific research regarding spectral images. The potential of these images to revolutionize the digital photography industry, like aerial photography through Unmanned Aerial Vehicles (UAVs), has captured considerable attention. One encouraging aspect is their combination with machine learning and deep learning algorithms, which have demonstrated remarkable outcomes in image classification. As a result of this powerful amalgamation, the adoption of spectral images has experienced exponential growth across various domains, with agriculture being one of the prominent beneficiaries. This paper presents an extensive survey encompassing multispectral and… More >

  • Open Access

    ARTICLE

    Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features

    Asifa Mehmood Qureshi1, Naif Al Mudawi2, Mohammed Alonazi3, Samia Allaoua Chelloug4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3683-3701, 2024, DOI:10.32604/cmc.2024.043611 - 26 March 2024

    Abstract Road traffic monitoring is an imperative topic widely discussed among researchers. Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides. However, aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area. To this end, different models have shown the ability to recognize and track vehicles. However, these methods are not mature enough to produce accurate results in complex road scenes. Therefore, this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with… More >

  • Open Access

    ARTICLE

    SwinVid: Enhancing Video Object Detection Using Swin Transformer

    Abdelrahman Maharek1,2,*, Amr Abozeid2,3, Rasha Orban1, Kamal ElDahshan2

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 305-320, 2024, DOI:10.32604/csse.2024.039436 - 19 March 2024

    Abstract What causes object detection in video to be less accurate than it is in still images? Because some video frames have degraded in appearance from fast movement, out-of-focus camera shots, and changes in posture. These reasons have made video object detection (VID) a growing area of research in recent years. Video object detection can be used for various healthcare applications, such as detecting and tracking tumors in medical imaging, monitoring the movement of patients in hospitals and long-term care facilities, and analyzing videos of surgeries to improve technique and training. Additionally, it can be used… More >

  • Open Access

    ARTICLE

    CAW-YOLO: Cross-Layer Fusion and Weighted Receptive Field-Based YOLO for Small Object Detection in Remote Sensing

    Weiya Shi1,*, Shaowen Zhang2, Shiqiang Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3209-3231, 2024, DOI:10.32604/cmes.2023.044863 - 11 March 2024

    Abstract In recent years, there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks. Despite these efforts, the detection of small objects in remote sensing remains a formidable challenge. The deep network structure will bring about the loss of object features, resulting in the loss of object features and the near elimination of some subtle features associated with small objects in deep layers. Additionally, the features of small objects are susceptible to interference from background features contained within the image, leading to a decline in detection accuracy.… More >

  • Open Access

    ARTICLE

    An Underwater Target Detection Algorithm Based on Attention Mechanism and Improved YOLOv7

    Liqiu Ren, Zhanying Li*, Xueyu He, Lingyan Kong, Yinghao Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2829-2845, 2024, DOI:10.32604/cmc.2024.047028 - 27 February 2024

    Abstract For underwater robots in the process of performing target detection tasks, the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model, which is prone to issues like error detection, omission detection, and poor accuracy. Therefore, this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7) underwater target detection algorithm. To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase, we have added a Convolutional Block Attention Module (CBAM) to the backbone network. The Reparameterization Visual Geometry Group (RepVGG)… More >

  • Open Access

    ARTICLE

    Multi-Stream Temporally Enhanced Network for Video Salient Object Detection

    Dan Xu*, Jiale Ru, Jinlong Shi

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 85-104, 2024, DOI:10.32604/cmc.2023.045258 - 30 January 2024

    Abstract Video salient object detection (VSOD) aims at locating the most attractive objects in a video by exploring the spatial and temporal features. VSOD poses a challenging task in computer vision, as it involves processing complex spatial data that is also influenced by temporal dynamics. Despite the progress made in existing VSOD models, they still struggle in scenes of great background diversity within and between frames. Additionally, they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration. We propose a multi-stream temporal enhanced network (MSTENet)… More >

  • Open Access

    REVIEW

    A Review on the Application of Deep Learning Methods in Detection and Identification of Rice Diseases and Pests

    Xiaozhong Yu1,2,*, Jinhua Zheng1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 197-225, 2024, DOI:10.32604/cmc.2023.043943 - 30 January 2024

    Abstract In rice production, the prevention and management of pests and diseases have always received special attention. Traditional methods require human experts, which is costly and time-consuming. Due to the complexity of the structure of rice diseases and pests, quickly and reliably recognizing and locating them is difficult. Recently, deep learning technology has been employed to detect and identify rice diseases and pests. This paper introduces common publicly available datasets; summarizes the applications on rice diseases and pests from the aspects of image recognition, object detection, image segmentation, attention mechanism, and few-shot learning methods according to More >

  • Open Access

    ARTICLE

    A Secure and Cost-Effective Training Framework Atop Serverless Computing for Object Detection in Blasting Sites

    Tianming Zhang1, Zebin Chen1, Haonan Guo2, Bojun Ren1, Quanmin Xie3,*, Mengke Tian4,*, Yong Wang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2139-2154, 2024, DOI:10.32604/cmes.2023.043822 - 29 January 2024

    Abstract The data analysis of blasting sites has always been the research goal of relevant researchers. The rise of mobile blasting robots has aroused many researchers’ interest in machine learning methods for target detection in the field of blasting. Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience, which has aroused people’s interest in how to use it in the field of machine learning. In this paper, we design a distributed machine learning training application based on the AWS Lambda platform. Based on data parallelism, the More >

  • Open Access

    REVIEW

    Exploring Deep Learning Methods for Computer Vision Applications across Multiple Sectors: Challenges and Future Trends

    Narayanan Ganesh1, Rajendran Shankar2, Miroslav Mahdal3, Janakiraman Senthil Murugan4, Jasgurpreet Singh Chohan5, Kanak Kalita6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 103-141, 2024, DOI:10.32604/cmes.2023.028018 - 30 December 2023

    Abstract Computer vision (CV) was developed for computers and other systems to act or make recommendations based on visual inputs, such as digital photos, movies, and other media. Deep learning (DL) methods are more successful than other traditional machine learning (ML) methods in CV. DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization, object detection, and face recognition. In this review, a structured discussion on the history, methods, and applications of DL methods to CV problems is presented. The sector-wise presentation of applications in this paper may be particularly useful for researchers More >

Displaying 51-60 on page 6 of 165. Per Page