Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (195)
  • Open Access

    ARTICLE

    An Improved Knowledge Distillation Algorithm and Its Application to Object Detection

    Min Yao1,*, Guofeng Liu2, Yaozu Zhang3, Guangjie Hu1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2189-2205, 2025, DOI:10.32604/cmc.2025.060609 - 16 April 2025

    Abstract Knowledge distillation (KD) is an emerging model compression technique for learning compact object detector models. Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers, which may limit the comprehensive learning of the student network. Additionally, the imbalance between the foreground and background also affects the performance of the model. To address these issues, this paper employs feature-based distillation to enhance the detection performance of the bounding box localization part, and logit-based distillation to improve the detection performance of the category prediction part. Specifically, for the intermediate layer feature… More >

  • Open Access

    ARTICLE

    Coupling the Power of YOLOv9 with Transformer for Small Object Detection in Remote-Sensing Images

    Mohammad Barr*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 593-616, 2025, DOI:10.32604/cmes.2025.062264 - 11 April 2025

    Abstract Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance and management. However, challenges like small object detection, scale variation, and the presence of closely packed objects in these images hinder accurate detection. Additionally, the motion blur effect further complicates the identification of such objects. To address these issues, we propose enhanced YOLOv9 with a transformer head (YOLOv9-TH). The model introduces an additional prediction head for detecting objects of varying sizes and swaps the original prediction heads for transformer heads to leverage self-attention mechanisms. We… More >

  • Open Access

    ARTICLE

    OD-YOLOv8: A Lightweight and Enhanced New Algorithm for Ship Detection

    Zhuowei Wang1,*, Dezhi Han1, Bing Han2, Zhongdai Wu2

    Computer Systems Science and Engineering, Vol.49, pp. 377-399, 2025, DOI:10.32604/csse.2025.059634 - 09 April 2025

    Abstract Synthetic Aperture Radar (SAR) has become one of the most effective tools in ship detection. However, due to significant background interference, small targets, and challenges related to target scattering intensity in SAR images, current ship target detection faces serious issues of missed detections and false positives, and the network structures are overly complex. To address this issue, this paper proposes a lightweight model based on YOLOv8, named OD-YOLOv8. Firstly, we adopt a simplified neural network architecture, VanillaNet, to replace the backbone network, significantly reducing the number of parameters and computational complexity while ensuring accuracy. Secondly,… More >

  • Open Access

    ARTICLE

    Efficient Spatiotemporal Information Utilization for Video Camouflaged Object Detection

    Dongdong Zhang, Chunping Wang, Huiying Wang, Qiang Fu*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4319-4338, 2025, DOI:10.32604/cmc.2025.060653 - 06 March 2025

    Abstract Video camouflaged object detection (VCOD) has become a fundamental task in computer vision that has attracted significant attention in recent years. Unlike image camouflaged object detection (ICOD), VCOD not only requires spatial cues but also needs motion cues. Thus, effectively utilizing spatiotemporal information is crucial for generating accurate segmentation results. Current VCOD methods, which typically focus on exploring motion representation, often ineffectively integrate spatial and motion features, leading to poor performance in diverse scenarios. To address these issues, we design a novel spatiotemporal network with an encoder-decoder structure. During the encoding stage, an adjacent space-time More >

  • Open Access

    ARTICLE

    A Latency-Efficient Integration of Channel Attention for ConvNets

    Woongkyu Park1, Yeongyu Choi2, Mahammad Shareef Mekala3, Gyu Sang Choi1, Kook-Yeol Yoo1, Ho-youl Jung1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3965-3981, 2025, DOI:10.32604/cmc.2025.059966 - 06 March 2025

    Abstract Designing fast and accurate neural networks is becoming essential in various vision tasks. Recently, the use of attention mechanisms has increased, aimed at enhancing the vision task performance by selectively focusing on relevant parts of the input. In this paper, we concentrate on squeeze-and-excitation (SE)-based channel attention, considering the trade-off between latency and accuracy. We propose a variation of the SE module, called squeeze-and-excitation with layer normalization (SELN), in which layer normalization (LN) replaces the sigmoid activation function. This approach reduces the vanishing gradient problem while enhancing feature diversity and discriminability of channel attention. In… More >

  • Open Access

    ARTICLE

    Point-Based Fusion for Multimodal 3D Detection in Autonomous Driving

    Xinxin Liu, Bin Ye*

    Computer Systems Science and Engineering, Vol.49, pp. 287-300, 2025, DOI:10.32604/csse.2025.061655 - 20 February 2025

    Abstract In the broader field of mechanical technology, and particularly in the context of self-driving vehicles, cameras and Light Detection and Ranging (LiDAR) sensors provide complementary modalities that hold significant potential for sensor fusion. However, directly merging multi-sensor data through point projection often results in information loss due to quantization, and managing the differing data formats from multiple sensors remains a persistent challenge. To address these issues, we propose a new fusion method that leverages continuous convolution, point-pooling, and a learned Multilayer Perceptron (MLP) to achieve superior detection performance. Our approach integrates the segmentation mask with… More >

  • Open Access

    ARTICLE

    ASL-OOD: Hierarchical Contextual Feature Fusion with Angle-Sensitive Loss for Oriented Object Detection

    Kexin Wang1,#, Jiancheng Liu1,#,*, Yuqing Lin2,*, Tuo Wang1, Zhipeng Zhang1, Wanlong Qi1, Xingye Han1, Runyuan Wen3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1879-1899, 2025, DOI:10.32604/cmc.2024.058952 - 17 February 2025

    Abstract Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object detection. Current frameworks for oriented detection modules are constrained by intrinsic limitations, including excessive computational and memory overheads, discrepancies between predefined anchors and ground truth bounding boxes, intricate training processes, and feature alignment inconsistencies. To overcome these challenges, we present ASL-OOD (Angle-based SIOU Loss for Oriented Object Detection), a novel, efficient, and robust one-stage framework tailored for oriented object detection. The ASL-OOD framework comprises three core components: the Transformer-based Backbone (TB), the Transformer-based Neck… More >

  • Open Access

    ARTICLE

    YOLO-LFD: A Lightweight and Fast Model for Forest Fire Detection

    Honglin Wang1, Yangyang Zhang2,*, Cheng Zhu3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3399-3417, 2025, DOI:10.32604/cmc.2024.058932 - 17 February 2025

    Abstract Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Lightweight Fire Detector (YOLO-LFD), to address the limitations of traditional sensor-based fire detection methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature extraction… More >

  • Open Access

    ARTICLE

    Enhanced Multi-Scale Object Detection Algorithm for Foggy Traffic Scenarios

    Honglin Wang1, Zitong Shi2,*, Cheng Zhu3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2451-2474, 2025, DOI:10.32604/cmc.2024.058474 - 17 February 2025

    Abstract In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different… More >

  • Open Access

    ARTICLE

    Salient Object Detection Based on Multi-Strategy Feature Optimization

    Libo Han1,2, Sha Tao1,2, Wen Xia3, Weixin Sun3, Li Yan3, Wanlin Gao1,2,3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2431-2449, 2025, DOI:10.32604/cmc.2024.057833 - 17 February 2025

    Abstract At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of missed and false detections. Effectively optimizing features to capture key information and better integrating different levels of features to enhance their complementarity are two significant challenges in the domain of SOD. In response to these challenges, this study proposes a novel SOD method based on multi-strategy feature optimization. We propose the multi-size feature extraction module (MSFEM), which uses the attention mechanism, the multi-level feature… More >

Displaying 41-50 on page 5 of 195. Per Page