Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,559)
  • Open Access

    ARTICLE

    Vibration and Buckling of Truss Core Sandwich Plates on An Elastic Foundation Subjected to Biaxial In-plane Loads

    J.W. Chen1, W. Liu1, X.Y. Su1,2

    CMC-Computers, Materials & Continua, Vol.24, No.2, pp. 163-182, 2011, DOI:10.3970/cmc.2011.024.163

    Abstract Truss-core sandwich plates are thin-walled structures comprising a truss core and two thin flat sheets. Since no direct analytical solution for the dynamic response of such structures exists, the complex three dimensional (3D) systems are idealized as equivalent 2D homogeneous continuous plates. The macroscopic effective bending and transverse shear stiffness are derived. Two representative core topologies are considered: pyramidal truss core and tetrahedral truss core. The first order shear deformation theory is used to study the flexural vibration of a simply supported sandwich plate. The buckling of the truss core plate on an elastic foundation subjected to biaxial in-plane compressive… More >

  • Open Access

    ARTICLE

    Solution of Inverse Boundary Optimization Problem by Trefftz Method and Exponentially Convergent Scalar Homotopy Algorithm

    Hsin-Fang Chan1, Chia-Ming Fan1,2, Weichung Yeih1

    CMC-Computers, Materials & Continua, Vol.24, No.2, pp. 125-142, 2011, DOI:10.3970/cmc.2011.024.125

    Abstract The inverse boundary optimization problem, governed by the Helmholtz equation, is analyzed by the Trefftz method (TM) and the exponentially convergent scalar homotopy algorithm (ECSHA). In the inverse boundary optimization problem, the position for part of boundary with given boundary condition is unknown, and the position for the rest of boundary with additionally specified boundary conditions is given. Therefore, it is very difficult to handle the boundary optimization problem by any numerical scheme. In order to stably solve the boundary optimization problem, the TM, one kind of boundary-type meshless methods, is adopted in this study, since it can avoid the… More >

  • Open Access

    ARTICLE

    A Nonlinear Optimization Algorithm for Lower Bound Limit and Shakedown Analysis

    G. Gang1, Y.H. Liu2

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 251-272, 2010, DOI:10.3970/cmc.2010.020.251

    Abstract Limit and shakedown analysis theorems are the theories of classical plasticity for the direct computation of the load-carrying capacity under proportional and varying loads. Based on Melan's theorem, a solution procedure for lower bound limit and shakedown analysis of three-dimensional (3D) structures is established making use of the finite element method (FEM). The self-equilibrium stress fields are expressed by linear combination of several basic self-equilibrium stress fields with parameters to be determined. These basic self-equilibrium stress fields are elastic responses of the body to imposed permanent strains obtained through elastic-plastic incremental analysis by the three-dimensional finite element method (3D-FEM). The… More >

  • Open Access

    ARTICLE

    Parameter Identification Method of Large Macro-Micro Coupled Constitutive Models Based on Identifiability Analysis

    Jie Qu1,2, Bingye Xu3, Quanlin Jin4

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 119-158, 2010, DOI:10.3970/cmc.2010.020.119

    Abstract Large and complex macro-micro coupled constitutive models, which describe metal flow and microstructure evolution during metal forming, are sometimes overparameterized with respect to given sets of experimental datum. This results in poorly identifiable or non-identifiable model parameters. In this paper, a systemic parameter identification method for the large macro-micro coupled constitutive models is proposed. This method is based on the global and local identifiability analysis, in which two identifiability measures are adopted. The first measure accounts for the sensitivity of model results with respect to single parameters, and the second measure accounts for the degree of near-linear dependence of sensitivity… More >

  • Open Access

    ARTICLE

    Multi-Disciplinary Optimization for Multi-Objective Uncertainty Design of Thin Walled Beams

    Fangyi Li1, Guangyao Li2,3, Guangyong Sun2, Zhen Luo4, Zheng Zhang2

    CMC-Computers, Materials & Continua, Vol.19, No.1, pp. 37-56, 2010, DOI:10.3970/cmc.2010.019.037

    Abstract The focus of this paper is concentrated on multi-disciplinary and multi-objective optimization for thin walled beam systems considering safety, normal mode, static loading-bearing and weight, in which the uncertainties of the parameters are described via intervals. The size and shape of the cross-section are treated as design parameters during optimization. Considering the lightweight and safety, the design problem is formulated with two individual objectives to measure structural weight and maximum energy absorption, respectively, constrained by the average force, normal mode and maximum stress. The optimization problem with uncertainties is further transformed into a deterministic optimization based on interval number programming.… More >

  • Open Access

    ARTICLE

    An Efficient Reliability-based Optimization Method for Uncertain Structures Based on Non-probability Interval Model

    C. Jiang1, Y.C. Bai1, X. Han1,2, H.M. Ning1

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 21-42, 2010, DOI:10.3970/cmc.2010.018.021

    Abstract In this paper, an efficient interval optimization method based on a reliability-based possibility degree of interval (RPDI) is suggested for the design of uncertain structures. A general nonlinear interval optimization problem is studied in which the objective function and constraints are both nonlinear and uncertain. Through an interval order relation and a reliability-based possibility degree of interval, the uncertain optimization problem is transformed into a deterministic one. A sequence of approximate optimization problems are constructed based on the linear approximation technique. Each approximate optimization problem can be changed to a traditional linear programming problem, which can be easily solved by… More >

  • Open Access

    ARTICLE

    Interval-Based Uncertain Multi-Objective Optimization Design of Vehicle Crashworthiness

    F.Y.Li1,2, G.Y.Li1

    CMC-Computers, Materials & Continua, Vol.15, No.3, pp. 199-220, 2010, DOI:10.3970/cmc.2010.015.199

    Abstract In this paper, an uncertain multi-objective optimization method is suggested to deal with crashworthiness design problem of vehicle, in which the uncertainties of the parameters are described by intervals. Considering both lightweight and safety performance, structural weight and peak acceleration are selected as objectives. The occupant distance is treated as constraint. Based on interval number programming method, the uncertain optimization problem is transformed into a deterministic optimization problem. The approximation models are constructed for objective functions and constraint based on Latin Hypercube Design (LHD). Thus, the interval number programming method is combined with the approximation model to solve the uncertain… More >

  • Open Access

    ARTICLE

    Research on Activated Carbon Supercapacitors Electrochemical Properties Based on Improved PSO-BP Neural Network

    Xiaoyi Liang1, Zhen Yang1,2, Xingsheng Gu3, Licheng Ling1

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 135-152, 2009, DOI:10.3970/cmc.2009.013.135

    Abstract Supercapacitors, also called electrical double-layer capacitors (EDLCs), occupy a region between batteries and dielectric capacitors on the Ragone plot describing the relation between energy and power. BET specific surface area and specific capacitance are two important electrochemical property parameters for activated carbon EDLCs, which are usually tested by experimental method. However, it is misspent time to repeat lots of experiments for EDLCs' studies. In this investigation, we developed one theoretical model based on improved particle swarm optimization algorithm back propagation (PSO-BP) neural network (NN) to simulate and optimize BET specific surface area and specific capacitance. Comparative studies between the predicted… More >

  • Open Access

    ARTICLE

    An Optimization Analysis of UBM Thicknesses and Solder Geometry on A Wafer Level Chip Scale Package Using Robust Methods

    Heng-Cheng Lin1, Chieh Kung2, Rong-Sheng Chen1, Gin-Tiao Liang1

    CMC-Computers, Materials & Continua, Vol.3, No.2, pp. 55-64, 2006, DOI:10.3970/cmc.2006.003.055

    Abstract Wafer level chip scale package (WLCSP) has been recognized providing clear advantages over traditional wire-bond package in relaxing the need of underfill while offering high density of I/O interconnects. Without the underfill, the solder joint reliability becomes more critical. Adding to the reliability concerns is the safety demand trend toward "green'' products on which unleaded material, e.g. lead-free solders, is required. The requirement of lead-free solders on the packages results in a higher reflow temperature profile in the package manufacturing process, in turn, complicating the reliability issue. This paper presents an optimization study, considering the fatigue reliability, for a wafer… More >

Displaying 1551-1560 on page 156 of 1559. Per Page