Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (255)
  • Open Access

    ARTICLE

    A Transfer Learning-Enabled Optimized Extreme Deep Learning Paradigm for Diagnosis of COVID-19

    Ahmed Reda*, Sherif Barakat, Amira Rezk

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1381-1399, 2022, DOI:10.32604/cmc.2022.019809 - 07 September 2021

    Abstract Many respiratory infections around the world have been caused by coronaviruses. COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate. There is a high need for computer-assisted diagnostics (CAD) in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems. Machine learning (ML) has been used to examine chest X-ray frames. In this paper, a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes, a pneumonia patient, a More >

  • Open Access

    ARTICLE

    BHGSO: Binary Hunger Games Search Optimization Algorithm for Feature Selection Problem

    R. Manjula Devi1, M. Premkumar2, Pradeep Jangir3, B. Santhosh Kumar4, Dalal Alrowaili5, Kottakkaran Sooppy Nisar6,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 557-579, 2022, DOI:10.32604/cmc.2022.019611 - 07 September 2021

    Abstract In machine learning and data mining, feature selection (FS) is a traditional and complicated optimization problem. Since the run time increases exponentially, FS is treated as an NP-hard problem. The researcher’s effort to build a new FS solution was inspired by the ongoing need for an efficient FS framework and the success rates of swarming outcomes in different optimization scenarios. This paper presents two binary variants of a Hunger Games Search Optimization (HGSO) algorithm based on V- and S-shaped transfer functions within a wrapper FS model for choosing the best features from a large dataset.… More >

  • Open Access

    ARTICLE

    A Modified Search and Rescue Optimization Based Node Localization Technique in WSN

    Suma Sira Jacob1,*, K. Muthumayil2, M. Kavitha3, Lijo Jacob Varghese4, M. Ilayaraja5, Irina V. Pustokhina6, Denis A. Pustokhin7

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1229-1245, 2022, DOI:10.32604/cmc.2022.019019 - 07 September 2021

    Abstract Wireless sensor network (WSN) is an emerging technology which find useful in several application areas such as healthcare, environmental monitoring, border surveillance, etc. Several issues that exist in the designing of WSN are node localization, coverage, energy efficiency, security, and so on. In spite of the issues, node localization is considered an important issue, which intends to calculate the coordinate points of unknown nodes with the assistance of anchors. The efficiency of the WSN can be considerably influenced by the node localization accuracy. Therefore, this paper presents a modified search and rescue optimization based node… More >

  • Open Access

    ARTICLE

    Dynamic Routing Optimization Algorithm for Software Defined Networking

    Nancy Abbas El-Hefnawy1,*, Osama Abdel Raouf2, Heba Askr3

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1349-1362, 2022, DOI:10.32604/cmc.2022.017787 - 07 September 2021

    Abstract Time and space complexity is the most critical problem of the current routing optimization algorithms for Software Defined Networking (SDN). To overcome this complexity, researchers use meta-heuristic techniques inside the routing optimization algorithms in the OpenFlow (OF) based large scale SDNs. This paper proposes a hybrid meta-heuristic algorithm to optimize the dynamic routing problem for the large scale SDNs. Due to the dynamic nature of SDNs, the proposed algorithm uses a mutation operator to overcome the memory-based problem of the ant colony algorithm. Besides, it uses the box-covering method and the k-means clustering method to More >

  • Open Access

    ARTICLE

    Estimation of Locational Marginal Pricing Using Hybrid Optimization Algorithms

    M. Bhoopathi1,*, P. Palanivel2

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 143-159, 2022, DOI:10.32604/iasc.2022.017705 - 03 September 2021

    Abstract At present, the restructured electricity market has been a prominent research area and attracted attention. The motivation of the restructuring in the power system is to introduce the competition at various levels and to generate a correct economic signal to reduce the generation cost. As a result, it is required to have an effective price scheme to deliver useful information about the power. The pricing mechanism is dependent on the demand at the load level, the generator bids, and the limits of the transmission network. To address the congestion charges, Locational Marginal Pricing (LMP) is… More >

  • Open Access

    RETRACTION

    Retraction Notice to: New Solution Generation Strategy to Improve Brain Storm Optimization Algorithm for Classification

    Yu Xue1,2,* and Yan Zhao1

    Journal on Internet of Things, Vol.3, No.4, pp. 183-183, 2021, DOI:10.32604/jiot.2021.021063 - 30 December 2021

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Task Scheduling Optimization in Cloud Computing Based on Genetic Algorithms

    Ahmed Y. Hamed1,*, Monagi H. Alkinani2

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3289-3301, 2021, DOI:10.32604/cmc.2021.018658 - 24 August 2021

    Abstract Task scheduling is the main problem in cloud computing that reduces system performance; it is an important way to arrange user needs and perform multiple goals. Cloud computing is the most popular technology nowadays and has many research potential in various areas like resource allocation, task scheduling, security, privacy, etc. To improve system performance, an efficient task-scheduling algorithm is required. Existing task-scheduling algorithms focus on task-resource requirements, CPU memory, execution time, and execution cost. In this paper, a task scheduling algorithm based on a Genetic Algorithm (GA) has been presented for assigning and executing different… More >

  • Open Access

    ARTICLE

    Hybrid Sooty Tern Optimization and Differential Evolution for Feature Selection

    Heming Jia1,2,*, Yao Li2, Kangjian Sun2, Ning Cao1, Helen Min Zhou3

    Computer Systems Science and Engineering, Vol.39, No.3, pp. 321-335, 2021, DOI:10.32604/csse.2021.017536 - 12 August 2021

    Abstract In this paper, a hybrid model based on sooty tern optimization algorithm (STOA) is proposed to optimize the parameters of the support vector machine (SVM) and identify the best feature sets simultaneously. Feature selection is an essential process of data preprocessing, and it aims to find the most relevant subset of features. In recent years, it has been applied in many practical domains of intelligent systems. The application of SVM in many fields has proved its effectiveness in classification tasks of various types. Its performance is mainly determined by the kernel type and its parameters.… More >

  • Open Access

    ARTICLE

    Optimization of Sentiment Analysis Using Teaching-Learning Based Algorithm

    Abdullah Muhammad, Salwani Abdullah, Nor Samsiah Sani*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1783-1799, 2021, DOI:10.32604/cmc.2021.018593 - 21 July 2021

    Abstract Feature selection and sentiment analysis are two common studies that are currently being conducted; consistent with the advancements in computing and growing the use of social media. High dimensional or large feature sets is a key issue in sentiment analysis as it can decrease the accuracy of sentiment classification and make it difficult to obtain the optimal subset of the features. Furthermore, most reviews from social media carry a lot of noise and irrelevant information. Therefore, this study proposes a new text-feature selection method that uses a combination of rough set theory (RST) and teaching-learning… More >

  • Open Access

    ARTICLE

    LOA-RPL: Novel Energy-Efficient Routing Protocol for the Internet of Things Using Lion Optimization Algorithm to Maximize Network Lifetime

    Sankar Sennan1, Somula Ramasubbareddy2, Anand Nayyar3,4, Yunyoung Nam5,*, Mohamed Abouhawwash6,7

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 351-371, 2021, DOI:10.32604/cmc.2021.017360 - 04 June 2021

    Abstract Energy conservation is a significant task in the Internet of Things (IoT) because IoT involves highly resource-constrained devices. Clustering is an effective technique for saving energy by reducing duplicate data. In a clustering protocol, the selection of a cluster head (CH) plays a key role in prolonging the lifetime of a network. However, most cluster-based protocols, including routing protocols for low-power and lossy networks (RPLs), have used fuzzy logic and probabilistic approaches to select the CH node. Consequently, early battery depletion is produced near the sink. To overcome this issue, a lion optimization algorithm (LOA)… More >

Displaying 211-220 on page 22 of 255. Per Page