Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (257)
  • Open Access

    ARTICLE

    Optimization of Sentiment Analysis Using Teaching-Learning Based Algorithm

    Abdullah Muhammad, Salwani Abdullah, Nor Samsiah Sani*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1783-1799, 2021, DOI:10.32604/cmc.2021.018593 - 21 July 2021

    Abstract Feature selection and sentiment analysis are two common studies that are currently being conducted; consistent with the advancements in computing and growing the use of social media. High dimensional or large feature sets is a key issue in sentiment analysis as it can decrease the accuracy of sentiment classification and make it difficult to obtain the optimal subset of the features. Furthermore, most reviews from social media carry a lot of noise and irrelevant information. Therefore, this study proposes a new text-feature selection method that uses a combination of rough set theory (RST) and teaching-learning… More >

  • Open Access

    ARTICLE

    LOA-RPL: Novel Energy-Efficient Routing Protocol for the Internet of Things Using Lion Optimization Algorithm to Maximize Network Lifetime

    Sankar Sennan1, Somula Ramasubbareddy2, Anand Nayyar3,4, Yunyoung Nam5,*, Mohamed Abouhawwash6,7

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 351-371, 2021, DOI:10.32604/cmc.2021.017360 - 04 June 2021

    Abstract Energy conservation is a significant task in the Internet of Things (IoT) because IoT involves highly resource-constrained devices. Clustering is an effective technique for saving energy by reducing duplicate data. In a clustering protocol, the selection of a cluster head (CH) plays a key role in prolonging the lifetime of a network. However, most cluster-based protocols, including routing protocols for low-power and lossy networks (RPLs), have used fuzzy logic and probabilistic approaches to select the CH node. Consequently, early battery depletion is produced near the sink. To overcome this issue, a lion optimization algorithm (LOA)… More >

  • Open Access

    ARTICLE

    Segmentation of Brain Tumor Magnetic Resonance Images Using a Teaching-Learning Optimization Algorithm

    J. Jayanthi1,*, M. Kavitha2, T. Jayasankar3, A. Sagai Francis Britto4, N. B. Prakash5, Mohamed Yacin Sikkandar6, C. Bharathiraja7

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 4191-4203, 2021, DOI:10.32604/cmc.2021.012252 - 06 May 2021

    Abstract Image recognition is considered to be the pre-eminent paradigm for the automatic detection of tumor diseases in this era. Among various cancers identified so far, glioma, a type of brain tumor, is one of the deadliest cancers, and it remains challenging to the medicinal world. The only consoling factor is that the survival rate of the patient is increased by remarkable percentage with the early diagnosis of the disease. Early diagnosis is attempted to be accomplished with the changes observed in the images of suspected parts of the brain captured in specific interval of time.… More >

  • Open Access

    ARTICLE

    Improving Network Longevity in Wireless Sensor Networks Using an Evolutionary Optimization Approach

    V. Nivedhitha1,*, A. Gopi Saminathan2, P. Thirumurugan3

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 603-616, 2021, DOI:10.32604/iasc.2021.016780 - 20 April 2021

    Abstract Several protocols strive to improve network longevity but fail to ameliorate the uneven overhead imparted upon the sensor nodes that lead to temporal deaths. The proposed work uses a metaheuristic approach that promotes load balancing and energy-efficient data transmission using the fruit fly optimization algorithm (FFOA). The approach combines the LEACH protocol with differential evolution (DE) to select an optimum cluster head in every cluster. The algorithm is designed to provide energy-efficient data transmissions based on the smell and vision foraging behavior of fruit flies. The approach considers the compactness of nodes, energy capacity, and More >

  • Open Access

    ARTICLE

    Code Smell Detection Using Whale Optimization Algorithm

    Moatasem M. Draz1, Marwa S. Farhan2,3,*, Sarah N. Abdulkader4,5, M. G. Gafar6,7

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1919-1935, 2021, DOI:10.32604/cmc.2021.015586 - 13 April 2021

    Abstract Software systems have been employed in many fields as a means to reduce human efforts; consequently, stakeholders are interested in more updates of their capabilities. Code smells arise as one of the obstacles in the software industry. They are characteristics of software source code that indicate a deeper problem in design. These smells appear not only in the design but also in software implementation. Code smells introduce bugs, affect software maintainability, and lead to higher maintenance costs. Uncovering code smells can be formulated as an optimization problem of finding the best detection rules. Although researchers… More >

  • Open Access

    ARTICLE

    Optimizing Service Composition (SC) Using Smart Multistage Forward Search (SMFS)

    Issam Alhadid1, Hassan Tarawneh2, Khalid Kaabneh2, Ra’ed Masa’deh3, Nawaf N. Hamadneh4,*, Muhammad Tahir5, Sufian Khwaldeh1

    Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 321-336, 2021, DOI:10.32604/iasc.2021.014892 - 01 April 2021

    Abstract

    Service Oriented Architecture (SOA) is a style of software design where Web Services (WS) provide services to the other components through a communication protocol over a network. WS components are managed, updated, and rearranged at runtime to provide the business processes as SCs, which consist of a set of WSs that can be invoked in a specific order to fulfill the clients’ requests. According to the Service Level Agreement (SLA) requirements, WS selection and composition are significant perspectives of research to meet the clients’ expectations. This paper presents an effective technique using SMFS that attempts to

    More >

  • Open Access

    ARTICLE

    Rock Hyraxes Swarm Optimization: A New Nature-Inspired Metaheuristic Optimization Algorithm

    Belal Al-Khateeb1,*, Kawther Ahmed2, Maha Mahmood1, Dac-Nhuong Le3,4

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 643-654, 2021, DOI:10.32604/cmc.2021.013648 - 22 March 2021

    Abstract This paper presents a novel metaheuristic algorithm called Rock Hyraxes Swarm Optimization (RHSO) inspired by the behavior of rock hyraxes swarms in nature. The RHSO algorithm mimics the collective behavior of Rock Hyraxes to find their eating and their special way of looking at this food. Rock hyraxes live in colonies or groups where a dominant male watch over the colony carefully to ensure their safety leads the group. Forty-eight (22 unimodal and 26 multimodal) test functions commonly used in the optimization area are used as a testing benchmark for the RHSO algorithm. A comparative… More >

  • Open Access

    ARTICLE

    An Efficient Genetic Hybrid PAPR Technique for 5G Waveforms

    Arun Kumar1, Mahmoud A. Albreem2, Mohammed H. Alsharif3, Abu Jahid4, Peerapong Uthansakul5,*, Jamel Nebhen6

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3283-3292, 2021, DOI:10.32604/cmc.2021.015470 - 01 March 2021

    Abstract Non-orthogonal multiple access (NOMA) is a strong contender multicarrier waveform technique for the fifth generation (5G) communication system. The high peak-to-average power ratio (PAPR) is a serious concern in designing the NOMA waveform. However, the arrangement of NOMA is different from the orthogonal frequency division multiplexing. Thus, traditional reduction methods cannot be applied to NOMA. A partial transmission sequence (PTS) is commonly utilized to minimize the PAPR of the transmitting NOMA symbol. The choice phase aspect in the PTS is the only non-linear optimization obstacle that creates a huge computational complication due to the respective… More >

  • Open Access

    ARTICLE

    An Intelligent Cluster Optimization Algorithm for Smart Body Area Networks

    Adil Mushtaq1, Muhammad Nadeem Majeed1, Farhan Aadil2, Muhammad Fahad Khan2, Sangsoon Lim3,*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3795-3814, 2021, DOI:10.32604/cmc.2021.015369 - 01 March 2021

    Abstract Body Area Networks (BODYNETs) or Wireless Body Area Networks (WBAN), being an important type of ad-hoc network, plays a vital role in multimedia, safety, and traffic management applications. In BODYNETs, rapid topology changes occur due to high node mobility, which affects the scalability of the network. Node clustering is one mechanism among many others, which is used to overcome this issue in BODYNETs. There are many clustering algorithms used in this domain to overcome this issue. However, these algorithms generate a large number of Cluster Heads (CHs), which results in scarce resource utilization and degraded… More >

  • Open Access

    ARTICLE

    A New Metaheuristic Optimization Algorithms for Brushless Direct Current Wheel Motor Design Problem

    M. Premkumar1, R. Sowmya2, Pradeep Jangir3, Kottakkaran Sooppy Nisar4,*, Mujahed Aldhaifallah5

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2227-2242, 2021, DOI:10.32604/cmc.2021.015565 - 05 February 2021

    Abstract The Equilibrium Optimizer (EO), Grey Wolf Optimizer (GWO), and Whale Optimizer (WO) algorithms are being recently developed for engineering optimization problems. In this paper, the EO, GWO, and WO algorithms are applied individually for a brushless direct current (BLDC) design optimization problem. The EO algorithm is inspired by the models utilized to find the system’s dynamic state and equilibrium state. The GWO and WO algorithms are inspired by the hunting behavior of the wolf and the whale, respectively. The primary purpose of any optimization technique is to find the optimal configuration by maximizing motor efficiency… More >

Displaying 221-230 on page 23 of 257. Per Page