Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (85)
  • Open Access

    ARTICLE

    Hyperspectral Remote Sensing Image Classification Using Improved Metaheuristic with Deep Learning

    S. Rajalakshmi1,*, S. Nalini2, Ahmed Alkhayyat3, Rami Q. Malik4

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1673-1688, 2023, DOI:10.32604/csse.2023.034414 - 09 February 2023

    Abstract Remote sensing image (RSI) classifier roles a vital play in earth observation technology utilizing Remote sensing (RS) data are extremely exploited from both military and civil fields. More recently, as novel DL approaches develop, techniques for RSI classifiers with DL have attained important breakthroughs, providing a new opportunity for the research and development of RSI classifiers. This study introduces an Improved Slime Mould Optimization with a graph convolutional network for the hyperspectral remote sensing image classification (ISMOGCN-HRSC) model. The ISMOGCN-HRSC model majorly concentrates on identifying and classifying distinct kinds of RSIs. In the presented ISMOGCN-HRSC More >

  • Open Access

    ARTICLE

    Squirrel Search Optimization with Deep Convolutional Neural Network for Human Pose Estimation

    K. Ishwarya, A. Alice Nithya*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6081-6099, 2023, DOI:10.32604/cmc.2023.034654 - 28 December 2022

    Abstract Human pose estimation (HPE) is a procedure for determining the structure of the body pose and it is considered a challenging issue in the computer vision (CV) communities. HPE finds its applications in several fields namely activity recognition and human-computer interface. Despite the benefits of HPE, it is still a challenging process due to the variations in visual appearances, lighting, occlusions, dimensionality, etc. To resolve these issues, this paper presents a squirrel search optimization with a deep convolutional neural network for HPE (SSDCNN-HPE) technique. The major intention of the SSDCNN-HPE technique is to identify the… More >

  • Open Access

    ARTICLE

    Optimal Deep Learning Driven Intrusion Detection in SDN-Enabled IoT Environment

    Mohammed Maray1, Haya Mesfer Alshahrani2, Khalid A. Alissa3, Najm Alotaibi4, Abdulbaset Gaddah5, Ali Meree1,6, Mahmoud Othman7, Manar Ahmed Hamza8,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6587-6604, 2023, DOI:10.32604/cmc.2023.034176 - 28 December 2022

    Abstract In recent years, wireless networks are widely used in different domains. This phenomenon has increased the number of Internet of Things (IoT) devices and their applications. Though IoT has numerous advantages, the commonly-used IoT devices are exposed to cyber-attacks periodically. This scenario necessitates real-time automated detection and the mitigation of different types of attacks in high-traffic networks. The Software-Defined Networking (SDN) technique and the Machine Learning (ML)-based intrusion detection technique are effective tools that can quickly respond to different types of attacks in the IoT networks. The Intrusion Detection System (IDS) models can be employed… More >

  • Open Access

    ARTICLE

    Automated Arabic Text Classification Using Hyperparameter Tuned Hybrid Deep Learning Model

    Badriyya B. Al-onazi1, Saud S. Alotaib2, Saeed Masoud Alshahrani3,*, Najm Alotaibi4, Mrim M. Alnfiai5, Ahmed S. Salama6, Manar Ahmed Hamza7

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5447-5465, 2023, DOI:10.32604/cmc.2023.033564 - 28 December 2022

    Abstract The text classification process has been extensively investigated in various languages, especially English. Text classification models are vital in several Natural Language Processing (NLP) applications. The Arabic language has a lot of significance. For instance, it is the fourth mostly-used language on the internet and the sixth official language of the United Nations. However, there are few studies on the text classification process in Arabic. A few text classification studies have been published earlier in the Arabic language. In general, researchers face two challenges in the Arabic text classification process: low accuracy and high dimensionality… More >

  • Open Access

    ARTICLE

    Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition

    Mohammed Maray1, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Saeed Masoud Alshahrani4,*, Najm Alotaibi5, Sana Alazwari6, Mahmoud Othman7, Manar Ahmed Hamza8

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5467-5482, 2023, DOI:10.32604/cmc.2023.033534 - 28 December 2022

    Abstract The recognition of the Arabic characters is a crucial task in computer vision and Natural Language Processing fields. Some major complications in recognizing handwritten texts include distortion and pattern variabilities. So, the feature extraction process is a significant task in NLP models. If the features are automatically selected, it might result in the unavailability of adequate data for accurately forecasting the character classes. But, many features usually create difficulties due to high dimensionality issues. Against this background, the current study develops a Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition (SFODTL-AHCR) model. The… More >

  • Open Access

    ARTICLE

    Automated Deep Learning Driven Crop Classification on Hyperspectral Remote Sensing Images

    Mesfer Al Duhayyim1,*, Hadeel Alsolai2, Siwar Ben Haj Hassine3, Jaber S. Alzahrani4, Ahmed S. Salama5, Abdelwahed Motwakel6, Ishfaq Yaseen6, Abu Sarwar Zamani6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3167-3181, 2023, DOI:10.32604/cmc.2023.033054 - 31 October 2022

    Abstract Hyperspectral remote sensing/imaging spectroscopy is a novel approach to reaching a spectrum from all the places of a huge array of spatial places so that several spectral wavelengths are utilized for making coherent images. Hyperspectral remote sensing contains acquisition of digital images from several narrow, contiguous spectral bands throughout the visible, Thermal Infrared (TIR), Near Infrared (NIR), and Mid-Infrared (MIR) regions of the electromagnetic spectrum. In order to the application of agricultural regions, remote sensing approaches are studied and executed to their benefit of continuous and quantitative monitoring. Particularly, hyperspectral images (HSI) are considered the… More >

  • Open Access

    ARTICLE

    Data Mining with Comprehensive Oppositional Based Learning for Rainfall Prediction

    Mohammad Alamgeer1, Amal Al-Rasheed2, Ahmad Alhindi3, Manar Ahmed Hamza4,*, Abdelwahed Motwakel4, Mohamed I. Eldesouki5

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2725-2738, 2023, DOI:10.32604/cmc.2023.029163 - 31 October 2022

    Abstract Data mining process involves a number of steps from data collection to visualization to identify useful data from massive data set. the same time, the recent advances of machine learning (ML) and deep learning (DL) models can be utilized for effectual rainfall prediction. With this motivation, this article develops a novel comprehensive oppositional moth flame optimization with deep learning for rainfall prediction (COMFO-DLRP) Technique. The proposed CMFO-DLRP model mainly intends to predict the rainfall and thereby determine the environmental changes. Primarily, data pre-processing and correlation matrix (CM) based feature selection processes are carried out. In More >

  • Open Access

    ARTICLE

    Estimation of Higher Heating Value for MSW Using DSVM and BSOA

    Jithina Jose*, T. Sasipraba

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 573-588, 2023, DOI:10.32604/iasc.2023.030479 - 29 September 2022

    Abstract In recent decades, the generation of Municipal Solid Waste (MSW) is steadily increasing due to urbanization and technological advancement. The collection and disposal of municipal solid waste cause considerable environmental degradation, making MSW management a global priority. Waste-to-energy (WTE) using thermochemical process has been identified as the key solution in this area. After evaluating many automated Higher Heating Value (HHV) prediction approaches, an Optimal Deep Learning-based HHV Prediction (ODL-HHVP) model for MSW management has been developed. The objective of the ODL-HHVP model is to forecast the HHV of municipal solid waste, based on its oxygen,… More >

  • Open Access

    ARTICLE

    Deep Learning with Natural Language Processing Enabled Sentimental Analysis on Sarcasm Classification

    Abdul Rahaman Wahab Sait1,*, Mohamad Khairi Ishak2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2553-2567, 2023, DOI:10.32604/csse.2023.029603 - 01 August 2022

    Abstract Sentiment analysis (SA) is the procedure of recognizing the emotions related to the data that exist in social networking. The existence of sarcasm in textual data is a major challenge in the efficiency of the SA. Earlier works on sarcasm detection on text utilize lexical as well as pragmatic cues namely interjection, punctuations, and sentiment shift that are vital indicators of sarcasm. With the advent of deep-learning, recent works, leveraging neural networks in learning lexical and contextual features, removing the need for handcrafted feature. In this aspect, this study designs a deep learning with natural… More >

  • Open Access

    ARTICLE

    Optimal Deep Belief Network Enabled Cybersecurity Phishing Email Classification

    Ashit Kumar Dutta1,*, T. Meyyappan2, Basit Qureshi3, Majed Alsanea4, Anas Waleed Abulfaraj5, Manal M. Al Faraj1, Abdul Rahaman Wahab Sait6

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2701-2713, 2023, DOI:10.32604/csse.2023.028984 - 01 August 2022

    Abstract Recently, developments of Internet and cloud technologies have resulted in a considerable rise in utilization of online media for day to day lives. It results in illegal access to users’ private data and compromises it. Phishing is a popular attack which tricked the user into accessing malicious data and gaining the data. Proper identification of phishing emails can be treated as an essential process in the domain of cybersecurity. This article focuses on the design of biogeography based optimization with deep learning for Phishing Email detection and classification (BBODL-PEDC) model. The major intention of the… More >

Displaying 31-40 on page 4 of 85. Per Page