Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (83)
  • Open Access

    ARTICLE

    Deep Learning Based Distributed Intrusion Detection in Secure Cyber Physical Systems

    P. Ramadevi1,*, K. N. Baluprithviraj2, V. Ayyem Pillai3, Kamalraj Subramaniam4

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 2067-2081, 2022, DOI:10.32604/iasc.2022.026377 - 25 May 2022

    Abstract Cyber Physical Systems (CPSs) are network systems containing cyber (computation, communication) and physical (sensors, actuators) components that interact with each other through feedback loop with the help of human intervention. The dynamic and disseminated characteristics of CPS environment makes it vulnerable to threats that exist in virtualization process. Due to this, several security issues are presented in CPS. In order to address the challenges, there is a need exists to extend the conventional security solutions such as Intrusion Detection Systems (IDS) to handle high speed network data traffic and adaptive network pattern in cloud. Additionally,… More >

  • Open Access

    ARTICLE

    Modeling Metaheuristic Optimization with Deep Learning Software Bug Prediction Model

    M. Sangeetha1,*, S. Malathi2

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1587-1601, 2022, DOI:10.32604/iasc.2022.025192 - 25 May 2022

    Abstract Software testing is an effective means of verifying software stability and trustworthiness. It is essential in the software development process and needs a huge quantity of resources such as labor, money, and time. Automated software testing can be used to save manual work, shorten testing times, and improve testing performance. Recently, Software Bug Prediction (SBP) models have been developed to improve the software quality assurance (SQA) process through the prediction of bug parts. Advanced deep learning (DL) models can be used to classify faults in software parts. Because hyperparameters have a significant impact on the… More >

  • Open Access

    ARTICLE

    Deep Learning Enabled Computer Aided Diagnosis Model for Lung Cancer using Biomedical CT Images

    Mohammad Alamgeer1, Hanan Abdullah Mengash2, Radwa Marzouk2, Mohamed K Nour3, Anwer Mustafa Hilal4,*, Abdelwahed Motwakel4, Abu Sarwar Zamani4, Mohammed Rizwanullah4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1437-1448, 2022, DOI:10.32604/cmc.2022.027896 - 18 May 2022

    Abstract Early detection of lung cancer can help for improving the survival rate of the patients. Biomedical imaging tools such as computed tomography (CT) image was utilized to the proper identification and positioning of lung cancer. The recently developed deep learning (DL) models can be employed for the effectual identification and classification of diseases. This article introduces novel deep learning enabled CAD technique for lung cancer using biomedical CT image, named DLCADLC-BCT technique. The proposed DLCADLC-BCT technique intends for detecting and classifying lung cancer using CT images. The proposed DLCADLC-BCT technique initially uses gray level co-occurrence More >

  • Open Access

    ARTICLE

    Arithmetic Optimization with Deep Learning Enabled Anomaly Detection in Smart City

    Mahmoud Ragab1,2,3,*, Maha Farouk S. Sabir4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 381-395, 2022, DOI:10.32604/cmc.2022.027327 - 18 May 2022

    Abstract In recent years, Smart City Infrastructures (SCI) have become familiar whereas intelligent models have been designed to improve the quality of living in smart cities. Simultaneously, anomaly detection in SCI has become a hot research topic and is widely explored to enhance the safety of pedestrians. The increasing popularity of video surveillance system and drastic increase in the amount of collected videos make the conventional physical investigation method to identify abnormal actions, a laborious process. In this background, Deep Learning (DL) models can be used in the detection of anomalies found through video surveillance systems.… More >

  • Open Access

    ARTICLE

    Autonomous Unmanned Aerial Vehicles Based Decision Support System for Weed Management

    Ashit Kumar Dutta1,*, Yasser Albagory2, Abdul Rahaman Wahab Sait3, Ismail Mohamed Keshta1

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 899-915, 2022, DOI:10.32604/cmc.2022.026783 - 18 May 2022

    Abstract Recently, autonomous systems become a hot research topic among industrialists and academicians due to their applicability in different domains such as healthcare, agriculture, industrial automation, etc. Among the interesting applications of autonomous systems, their applicability in agricultural sector becomes significant. Autonomous unmanned aerial vehicles (UAVs) can be used for suitable site-specific weed management (SSWM) to improve crop productivity. In spite of substantial advancements in UAV based data collection systems, automated weed detection still remains a tedious task owing to the high resemblance of weeds to the crops. The recently developed deep learning (DL) models have… More >

  • Open Access

    ARTICLE

    Class Imbalance Handling with Deep Learning Enabled IoT Healthcare Diagnosis Model

    T. Ragupathi1,*, M. Govindarajan1, T. Priyaradhikadevi2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1351-1366, 2022, DOI:10.32604/iasc.2022.025756 - 03 May 2022

    Abstract The rapid advancements in the field of big data, wearables, Internet of Things (IoT), connected devices, and cloud environment find useful to improve the quality of healthcare services. Medical data classification using the data collected by the wearables and IoT devices can be used to determine the presence or absence of disease. The recently developed deep learning (DL) models can be used for several processes such as classification, natural language processing, etc. This study presents a bacterial foraging optimization (BFO) based convolutional neural network-gated recurrent unit (CNN-GRU) with class imbalance handling (CIH) model, named BFO-CNN-GRU-CIH… More >

  • Open Access

    ARTICLE

    Evolutionary Algorithsm with Machine Learning Based Epileptic Seizure Detection Model

    Manar Ahmed Hamza1,*, Noha Negm2, Shaha Al-Otaibi3, Amel A. Alhussan4, Mesfer Al Duhayyim5, Fuad Ali Mohammed Al-Yarimi2, Mohammed Rizwanullah1, Ishfaq Yaseen1

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4541-4555, 2022, DOI:10.32604/cmc.2022.027048 - 21 April 2022

    Abstract Machine learning (ML) becomes a familiar topic among decision makers in several domains, particularly healthcare. Effective design of ML models assists to detect and classify the occurrence of diseases using healthcare data. Besides, the parameter tuning of the ML models is also essential to accomplish effective classification results. This article develops a novel red colobuses monkey optimization with kernel extreme learning machine (RCMO-KELM) technique for epileptic seizure detection and classification. The proposed RCMO-KELM technique initially extracts the chaotic, time, and frequency domain features in the actual EEG signals. In addition, the min-max normalization approach is More >

  • Open Access

    ARTICLE

    Hybrid Metaheuristics Based License Plate Character Recognition in Smart City

    Esam A. AlQaralleh1, Fahad Aldhaban2, Halah Nasseif2, Bassam A.Y. Alqaralleh2,*, Tamer AbuKhalil3

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5727-5740, 2022, DOI:10.32604/cmc.2022.026780 - 21 April 2022

    Abstract Recent technological advancements have been used to improve the quality of living in smart cities. At the same time, automated detection of vehicles can be utilized to reduce crime rate and improve public security. On the other hand, the automatic identification of vehicle license plate (LP) character becomes an essential process to recognize vehicles in real time scenarios, which can be achieved by the exploitation of optimal deep learning (DL) approaches. In this article, a novel hybrid metaheuristic optimization based deep learning model for automated license plate character recognition (HMODL-ALPCR) technique has been presented for… More >

  • Open Access

    ARTICLE

    Grid Search for Predicting Coronary Heart Disease by Tuning Hyper-Parameters

    S. Prabu1,*, B. Thiyaneswaran2, M. Sujatha3, C. Nalini4, Sujatha Rajkumar5

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 737-749, 2022, DOI:10.32604/csse.2022.022739 - 20 April 2022

    Abstract Diagnosing the cardiovascular disease is one of the biggest medical difficulties in recent years. Coronary cardiovascular (CHD) is a kind of heart and blood vascular disease. Predicting this sort of cardiac illness leads to more precise decisions for cardiac disorders. Implementing Grid Search Optimization (GSO) machine training models is therefore a useful way to forecast the sickness as soon as possible. The state-of-the-art work is the tuning of the hyperparameter together with the selection of the feature by utilizing the model search to minimize the false-negative rate. Three models with a cross-validation approach do the… More >

  • Open Access

    ARTICLE

    Spider Monkey Optimization with Statistical Analysis for Robust Rainfall Prediction

    Mahmoud Ragab1,2,3,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 4143-4155, 2022, DOI:10.32604/cmc.2022.027075 - 29 March 2022

    Abstract Rainfall prediction becomes popular in real time environment due to the developments of recent technologies. Accurate and fast rainfall predictive models can be designed by the use of machine learning (ML), statistical models, etc. Besides, feature selection approaches can be derived for eliminating the curse of dimensionality problems. In this aspect, this paper presents a novel chaotic spider money optimization with optimal kernel ridge regression (CSMO-OKRR) model for accurate rainfall prediction. The goal of the CSMO-OKRR technique is to properly predict the rainfall using the weather data. The proposed CSMO-OKRR technique encompasses three major processes More >

Displaying 51-60 on page 6 of 83. Per Page