Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (83)
  • Open Access

    ARTICLE

    Drug–Target Interaction Prediction Model Using Optimal Recurrent Neural Network

    G. Kavipriya*, D. Manjula

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1675-1689, 2023, DOI:10.32604/iasc.2023.027670 - 19 July 2022

    Abstract Drug-target interactions prediction (DTIP) remains an important requirement in the field of drug discovery and human medicine. The identification of interaction among the drug compound and target protein plays an essential process in the drug discovery process. It is a lengthier and complex process for predicting the drug target interaction (DTI) utilizing experimental approaches. To resolve these issues, computational intelligence based DTIP techniques were developed to offer an efficient predictive model with low cost. The recently developed deep learning (DL) models can be employed for the design of effective predictive approaches for DTIP. With this… More >

  • Open Access

    ARTICLE

    Optimal Sparse Autoencoder Based Sleep Stage Classification Using Biomedical Signals

    Ashit Kumar Dutta1,*, Yasser Albagory2, Manal Al Faraj1, Yasir A. M. Eltahir3, Abdul Rahaman Wahab Sait4

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1517-1529, 2023, DOI:10.32604/csse.2023.026482 - 15 June 2022

    Abstract The recently developed machine learning (ML) models have the ability to obtain high detection rate using biomedical signals. Therefore, this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography (EEG) Biomedical Signals, named OSAE-SSCEEG technique. The major intention of the OSAE-SSCEEG technique is to find the sleep stage disorders using the EEG biomedical signals. The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach. Moreover, the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization (SAE-SR) with softmax (SM) approach. Finally, the parameter optimization of the More >

  • Open Access

    ARTICLE

    Intelligent Deep Learning Enabled Wild Forest Fire Detection System

    Ahmed S. Almasoud*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1485-1498, 2023, DOI:10.32604/csse.2023.025190 - 15 June 2022

    Abstract The latest advancements in computer vision and deep learning (DL) techniques pave the way to design novel tools for the detection and monitoring of forest fires. In this view, this paper presents an intelligent wild forest fire detection and alarming system using deep learning (IWFFDA-DL) model. The proposed IWFFDA-DL technique aims to identify forest fires at earlier stages through integrated sensors. The proposed IWFFDA-DL system includes an Integrated sensor system (ISS) combining an array of sensors that acts as the major input source that helps to forecast the fire. Then, the attention based convolution neural More >

  • Open Access

    ARTICLE

    Intelligent Deep Learning Enabled Human Activity Recognition for Improved Medical Services

    E. Dhiravidachelvi1, M.Suresh Kumar2, L. D. Vijay Anand3, D. Pritima4, Seifedine Kadry5, Byeong-Gwon Kang6, Yunyoung Nam7,*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 961-977, 2023, DOI:10.32604/csse.2023.024612 - 15 June 2022

    Abstract Human Activity Recognition (HAR) has been made simple in recent years, thanks to recent advancements made in Artificial Intelligence (AI) techniques. These techniques are applied in several areas like security, surveillance, healthcare, human-robot interaction, and entertainment. Since wearable sensor-based HAR system includes in-built sensors, human activities can be categorized based on sensor values. Further, it can also be employed in other applications such as gait diagnosis, observation of children/adult’s cognitive nature, stroke-patient hospital direction, Epilepsy and Parkinson’s disease examination, etc. Recently-developed Artificial Intelligence (AI) techniques, especially Deep Learning (DL) models can be deployed to accomplish… More >

  • Open Access

    ARTICLE

    Metaheuristics with Optimal Deep Transfer Learning Based Copy-Move Forgery Detection Technique

    C. D. Prem Kumar1,*, S. Saravana Sundaram2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 881-899, 2023, DOI:10.32604/iasc.2023.025766 - 06 June 2022

    Abstract The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content. An effective technique for tampering the identification is the copy-move forgery. Conventional image processing techniques generally search for the patterns linked to the fake content and restrict the usage in massive data classification. Contrastingly, deep learning (DL) models have demonstrated significant performance over the other statistical techniques. With this motivation, this paper presents an Optimal Deep Transfer Learning based Copy Move Forgery Detection (ODTL-CMFD) technique. The presented ODTL-CMFD technique aims to derive a DL… More >

  • Open Access

    ARTICLE

    Biomedical Osteosarcoma Image Classification Using Elephant Herd Optimization and Deep Learning

    Areej A. Malibari1, Jaber S. Alzahrani2, Marwa Obayya3, Noha Negm4,5, Mohammed Abdullah Al-Hagery6, Ahmed S. Salama7, Anwer Mustafa Hilal8,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6443-6459, 2022, DOI:10.32604/cmc.2022.031324 - 28 July 2022

    Abstract Osteosarcoma is a type of malignant bone tumor that is reported across the globe. Recent advancements in Machine Learning (ML) and Deep Learning (DL) models enable the detection and classification of malignancies in biomedical images. In this regard, the current study introduces a new Biomedical Osteosarcoma Image Classification using Elephant Herd Optimization and Deep Transfer Learning (BOIC-EHODTL) model. The presented BOIC-EHODTL model examines the biomedical images to diagnose distinct kinds of osteosarcoma. At the initial stage, Gabor Filter (GF) is applied as a pre-processing technique to get rid of the noise from images. In addition,… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuning Bidirectional Gated Recurrent Unit Model for Oral Cancer Classification

    K. Shankar1, E. Laxmi Lydia2, Sachin Kumar1,*, Ali S. Abosinne3, Ahmed alkhayyat4, A. H. Abbas5, Sarmad Nozad Mahmood6

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4541-4557, 2022, DOI:10.32604/cmc.2022.031247 - 28 July 2022

    Abstract Oral Squamous Cell Carcinoma (OSCC) is a type of Head and Neck Squamous Cell Carcinoma (HNSCC) and it should be diagnosed at early stages to accomplish efficient treatment, increase the survival rate, and reduce death rate. Histopathological imaging is a wide-spread standard used for OSCC detection. However, it is a cumbersome process and demands expert’s knowledge. So, there is a need exists for automated detection of OSCC using Artificial Intelligence (AI) and Computer Vision (CV) technologies. In this background, the current research article introduces Improved Slime Mould Algorithm with Artificial Intelligence Driven Oral Cancer Classification… More >

  • Open Access

    ARTICLE

    Privacy Preserving Blockchain with Optimal Deep Learning Model for Smart Cities

    K. Pradeep Mohan Kumar1, Jenifer Mahilraj2, D. Swathi3, R. Rajavarman4, Subhi R. M. Zeebaree5, Rizgar R. Zebari6, Zryan Najat Rashid7, Ahmed Alkhayyat8,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5299-5314, 2022, DOI:10.32604/cmc.2022.030825 - 28 July 2022

    Abstract Recently, smart cities have emerged as an effective approach to deliver high-quality services to the people through adaptive optimization of the available resources. Despite the advantages of smart cities, security remains a huge challenge to be overcome. Simultaneously, Intrusion Detection System (IDS) is the most proficient tool to accomplish security in this scenario. Besides, blockchain exhibits significance in promoting smart city designing, due to its effective characteristics like immutability, transparency, and decentralization. In order to address the security problems in smart cities, the current study designs a Privacy Preserving Secure Framework using Blockchain with Optimal… More >

  • Open Access

    ARTICLE

    Chaotic Krill Herd with Deep Transfer Learning-Based Biometric Iris Recognition System

    Harbi Al-Mahafzah1, Tamer AbuKhalil1, Bassam A. Y. Alqaralleh2,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5703-5715, 2022, DOI:10.32604/cmc.2022.030399 - 28 July 2022

    Abstract Biometric verification has become essential to authenticate the individuals in public and private places. Among several biometrics, iris has peculiar features and its working mechanism is complex in nature. The recent developments in Machine Learning and Deep Learning approaches enable the development of effective iris recognition models. With this motivation, the current study introduces a novel Chaotic Krill Herd with Deep Transfer Learning Based Biometric Iris Recognition System (CKHDTL-BIRS). The presented CKHDTL-BIRS model intends to recognize and classify iris images as a part of biometric verification. To achieve this, CKHDTL-BIRS model initially performs Median Filtering More >

  • Open Access

    ARTICLE

    Sign Language Recognition and Classification Model to Enhance Quality of Disabled People

    Fadwa Alrowais1, Saud S. Alotaibi2, Sami Dhahbi3,4, Radwa Marzouk5, Abdullah Mohamed6, Anwer Mustafa Hilal7,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3419-3432, 2022, DOI:10.32604/cmc.2022.029438 - 16 June 2022

    Abstract Sign language recognition can be considered as an effective solution for disabled people to communicate with others. It helps them in conveying the intended information using sign languages without any challenges. Recent advancements in computer vision and image processing techniques can be leveraged to detect and classify the signs used by disabled people in an effective manner. Metaheuristic optimization algorithms can be designed in a manner such that it fine tunes the hyper parameters, used in Deep Learning (DL) models as the latter considerably impacts the classification results. With this motivation, the current study designs… More >

Displaying 41-50 on page 5 of 83. Per Page