Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Developing Hybrid XGBoost Model to Predict the Strength of Polypropylene and Straw Fibers Reinforced Cemented Paste Backfill and Interpretability Insights

    Yingui Qiu1, Enming Li1,2,*, Pablo Segarra2, Bin Xi3, Jian Zhou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1607-1629, 2025, DOI:10.32604/cmes.2025.068211 - 31 August 2025

    Abstract With the growing demand for sustainable development in the mining industry, cemented paste backfill (CPB) materials, primarily composed of tailings, play a crucial role in mine backfilling and underground support systems. To enhance the mechanical properties of CPB materials, fiber reinforcement technology has gradually gained attention, though challenges remain in predicting its performance. This study develops a hybrid model based on the adaptive equilibrium optimizer (adap-EO)-enhanced XGBoost method for accurately predicting the uniaxial compressive strength of fiber-reinforced CPB. Through systematic comparison with various other machine learning methods, results demonstrate that the proposed hybrid model exhibits… More >

  • Open Access

    ARTICLE

    Calcination Analysis of CaCO3 from Waste Oyster Shells for Partial Cement Replacement

    Bunyamin Bunyamin1,2, Taufiq Saidi3, Sugiarto Sugiarto3,4, Muttaqin Hasan3,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1089-1109, 2025, DOI:10.32604/sdhm.2025.066887 - 05 September 2025

    Abstract Aceh in Indonesia is rich in marine resources and abundant fishery products such as oyster. Traditionally, fishermen only harvest oysters and discard the shells, which can cause pollution and environmental contamination. Waste Oyster Shells (WOS) contain a high percentage of calcium carbonate (CaCO3) that experiences thermal decomposition at high temperature, following the reaction CaCO3 → CaO + CO2 (ΔT = 825°C). At temperature > 900°C, dead-burned lime is formed, which severely influences CaO reactivity. However, the optimum temperature for producing high CaO content is still uncertain. Therefore, this study aimed to determine the optimum calcination temperature to… More > Graphic Abstract

    Calcination Analysis of CaCO<sub><b>3</b></sub> from Waste Oyster Shells for Partial Cement Replacement

  • Open Access

    PROCEEDINGS

    Reaction Characteristics of Low-Lime Calcium Silicate Cement Power in OPC Pastes

    Gwang Mok Kim1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012583

    Abstract This study summarized a part of the research conducted by Kim et al. [1]. The utilization of low-lime calcium silicate cement presents a promising avenue for reducing CO2 emissions in construction fields. Ordinary Portland cement pastes with the type of calcium silicate cement powder were fabricated and solidified under carbonation curing conditions. The physicochemical characteristics of the pastes were examined via variable tests including initial setting and flow characteristics, compressive strength and so on. Limestone and silica fume were employed for the synthesis of the calcium silicate cement used here. The content of calcium silicate More >

  • Open Access

    ARTICLE

    Preliminary Study on the Treatment Efficiency of Pasteurized Lime Thermal Alkaline Hydrolysis for Excess Activated Sludge and Reduction of Tetracycline Resistance Genes

    Maoxia Chen1,2,*, Qixuan Zhou1, Jiayue Zhang1, Jiaoyang Li1, Wei Zhang1, Huan Liu1

    Journal of Renewable Materials, Vol.11, No.10, pp. 3711-3723, 2023, DOI:10.32604/jrm.2023.027826 - 10 August 2023

    Abstract Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge (EAS). Owing to strict environment laws and need for better energy utilization, new methods were developed in this study to improve the efficiency of pretreatment method. Direct thermal hydrolysis (TH), pasteurized thermal hydrolysis (PTH), and alkaline pasteurized thermal hydrolysis (PTH + CaO and PTH + NaOH) methods were used to treat EAS. Each method was compared and analyzed in terms of dissolution in ammonium nitrogen (NH4 + -N) and soluble COD (SCOD) in EAS. Furthermore, the removal of tetracycline resistance genes… More >

  • Open Access

    ARTICLE

    Early-Age Properties Development of Recycled Glass Powder Blended Cement Paste: Strengths, Shrinkage, Nanoscale Characteristics, and Environmental Analysis

    Zhihai He1,2, Menglu Shen1, Jinyan Shi3,*, Jingyu Chang1, Víctor Revilla-Cuesta4, Osman Gencel5

    Journal of Renewable Materials, Vol.11, No.4, pp. 1835-1852, 2023, DOI:10.32604/jrm.2023.024887 - 01 December 2022

    Abstract Recycling solid waste in cement-based materials cannot only ease its load on the natural environment but also reduce the carbon emissions of building materials. This study aims to investigate the effect of recycled glass powder (RGP) on the early-age mechanical properties and autogenous shrinkage of cement pastes, where cement is replaced by 10%, 20% and 30% of RGP. In addition, the microstructure and nano-mechanical properties of cement paste with different RGP content and water to binder (W/B) ratio were also evaluated using SEM, MIP and nanoindentation techniques. The results indicate that the early-age autogenous shrinkage… More > Graphic Abstract

    Early-Age Properties Development of Recycled Glass Powder Blended Cement Paste: Strengths, Shrinkage, Nanoscale Characteristics, and Environmental Analysis

  • Open Access

    ARTICLE

    Bending and Free Vibration Analysis of Porous-Functionally-Graded (PFG) Beams Resting on Elastic Foundations

    Lazreg Hadji1,2,*, Fabrice Bernard3, Nafissa Zouatnia4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 1043-1054, 2023, DOI:10.32604/fdmp.2022.022327 - 02 November 2022

    Abstract The bending and free vibration of porous functionally graded (PFG) beams resting on elastic foundations are analyzed. The material features of the PFG beam are assumed to vary continuously through the thickness according to the volume fraction of components. The foundation medium is also considered to be linear, homogeneous, and isotropic, and modeled using the Winkler-Pasternak law. The hyperbolic shear deformation theory is applied for the kinematic relations, and the equations of motion are obtained using the Hamilton’s principle. An analytical solution is presented accordingly, assuming that the PFG beam is simply supported. Comparisons with More > Graphic Abstract

    Bending and Free Vibration Analysis of Porous-Functionally-Graded (PFG) Beams Resting on Elastic Foundations

  • Open Access

    ARTICLE

    Effect of Introducing Conductive Organic Carrier on Properties of Low-Temperature Conductive Silver Paste

    Peng Chen*, Wentao Shi, Jian Wan, Lu Huang

    Journal of Renewable Materials, Vol.11, No.2, pp. 1017-1029, 2023, DOI:10.32604/jrm.2023.023699 - 22 September 2022

    Abstract The poly(epoxy-N-methylaniline) conductive organic carrier was used as the bonding phase of the low-temperature conductive silver paste. Then, this was mixed with different proportions of silver powder to prepare the lowtemperature conductive silver paste. Afterwards, the effect of the conductive organic carrier on the properties of the low-temperature conductive silver paste was determined by IR, DMA and SEM. The results revealed that the prepared conductive paste has good conductivity, film-forming performance, printing performance, low-temperature curing performance, and anti-aging performance. When the mass percentage of the bonding phase/conductive phase was 40/60, the lowest volume resistivity of More > Graphic Abstract

    Effect of Introducing Conductive Organic Carrier on Properties of Low-Temperature Conductive Silver Paste

  • Open Access

    ARTICLE

    An Experimental Investigation on Workability and Bleeding Behaviors of Cement Pastes Doped with Nano Titanium Oxide (n-TiO2) Nanoparticles and Fly Ash

    Fatih Çelik1,*, Oğuzhan Yıldız2, Andaç Batur Çolak3, Samet Mufit Bozkır1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 135-158, 2023, DOI:10.32604/fdmp.2022.021014 - 02 August 2022

    Abstract In this study, the workability of cement-based grouts containing n-TiO2 nanoparticles and fly ash has been investigated experimentally. Several characteristic quantities (including, but not limited to, the marsh cone flow time, the mini slump spreading diameter and the plate cohesion meter value) have been measured for different percentages of these additives. The use of fly ash as a mineral additive has been found to result in improvements in terms of workability behavior as expected. Moreover, if nano titanium oxide is also used, an improvement can be obtained regarding the bleeding values for the cement-based grout mixes. More >

  • Open Access

    ARTICLE

    Utilization of Low-Alkalinity Cementitious Materials in Cemented Paste Backfill of Gold Mine Tailings

    Jiamao Li1,2,*, Chuimin Zhang1, Lin Li1, Chuangang Fan1,*, Zhaofang He3, Yuandi Qian3

    Journal of Renewable Materials, Vol.10, No.12, pp. 3439-3458, 2022, DOI:10.32604/jrm.2022.021214 - 14 July 2022

    Abstract The purpose of this paper was to explore the possibility of using low-alkalinity cementitious materials as binders, in which ground blast furnace slag and fly ash acted as a partial replacement of ordinary Portland cement, and CaSO4, Na2SO4, and CaO were used as a sulfate activator and alkali-activated additives, to solidify gold mine tailings for preparation of a green, inexpensive cemented paste backfill (CPB). For this target, the effects of cement/ tailings ratio, superplasticizer dosage, solid content, tailings fineness on the mechanical properties of the CPB were investigated. Additionally, the hydration mechanism of the CPB was… More >

  • Open Access

    ARTICLE

    Research and Application Status and Development Trend of Alkali-Activated Binder Powder for Mine Backfill

    Qian Zhou1, Yueyue Zhang1, Juanhong Liu1,2,3,*, Aixiang Wu1,2, Hongjiang Wang1,2

    Journal of Renewable Materials, Vol.10, No.12, pp. 3185-3199, 2022, DOI:10.32604/jrm.2022.020316 - 14 July 2022

    Abstract To improve the economic and social benefits of mining and backfill, it is necessary to find the backfill materials suitable for mineral mining, improve the various properties of the filling materials, and develop low cost, high performance new filling materials. Portland cement is neither environmentally friendly nor economical. Currently, we have begun to study and apply some industrial waste, such as slag, fly ash, and other solid wastes, with certain activities as the primary component of cementing material that will not only meet the technical requirements of filling, but also comprehensively utilize industrial waste and… More >

Displaying 1-10 on page 1 of 15. Per Page