Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (546)
  • Open Access

    ARTICLE

    Securing Display Path for Security-Sensitive Applications on Mobile Devices

    Jinhua Cui1,2, Yuanyuan Zhang3, Zhiping Cai1,*, Anfeng Liu4, Yangyang Li5

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 17-35, 2018, DOI:10.3970/cmc.2018.055.017

    Abstract While smart devices based on ARM processor bring us a lot of convenience, they also become an attractive target of cyber-attacks. The threat is exaggerated as commodity OSes usually have a large code base and suffer from various software vulnerabilities. Nowadays, adversaries prefer to steal sensitive data by leaking the content of display output by a security-sensitive application. A promising solution is to exploit the hardware visualization extensions provided by modern ARM processors to construct a secure display path between the applications and the display device. In this work, we present a scheme named SecDisplay for trusted display service, it… More >

  • Open Access

    ARTICLE

    Test Vector Optimization Using Pocofan-Poframe Partitioning

    P. PattunnaRajam1, *, Reeba korah2, G. Maria Kalavathy3

    CMC-Computers, Materials & Continua, Vol.54, No.3, pp. 251-268, 2018, DOI:10.3970/cmc.2018.054.251

    Abstract This paper presents an automated POCOFAN-POFRAME algorithm that partitions large combinational digital VLSI circuits for pseudo exhaustive testing. In this paper, a simulation framework and partitioning technique are presented to guide VLSI circuits to work under with fewer test vectors in order to reduce testing time and to develop VLSI circuit designs. This framework utilizes two methods of partitioning Primary Output Cone Fanout Partitioning (POCOFAN) and POFRAME partitioning to determine number of test vectors in the circuit. The key role of partitioning is to identify reconvergent fanout branch pairs and the optimal value of primary input node N and fanout… More >

  • Open Access

    ARTICLE

    A Machine Learning Approach for MRI Brain Tumor Classification

    Ravikumar Gurusamy1, Dr Vijayan Subramaniam2

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 91-108, 2017, DOI:10.3970/cmc.2017.053.091

    Abstract A new method for the denoising, extraction and tumor detection on MRI images is presented in this paper. MRI images help physicians study and diagnose diseases or tumors present in the brain. This work is focused towards helping the radiologist and physician to have a second opinion on the diagnosis. The ambiguity of Magnetic Resonance (MR) image features is solved in a simpler manner. The MRI image acquired from the machine is subjected to analysis in the work. The real-time data is used for the analysis. Basic preprocessing is performed using various filters for noise removal. The de-noised image is… More >

  • Open Access

    ARTICLE

    A Model to Describe the Fracture of Porous Polygranular Graphite Subject to Neutron Damage and Radiolytic Oxidation

    G. Smith1, E. Schlangen2, P.E.J. Flewitt3, A.G. Crocker4, A. Hodgkins5

    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 163-185, 2016, DOI:10.3970/cmc.2016.051.163

    Abstract Two linked models have been developed to explore the relationship between the amount of porosity arising in service from both radiolytic oxidation and fast neutron damage that influences both the strength and the force-displacement (load-displacement) behaviour and crack propagation in pile grade A graphite used as a nuclear reactor moderator material. Firstly models of the microstructure of the porous graphite for both unirradiated and irradiated graphite are created. These form the input for the second stage, simulating fracture in lattice-type finite element models, which predicts force (load)-displacement and crack propagation paths. Microstructures comprising aligned filler particles, typical of needle coke,… More >

  • Open Access

    ARTICLE

    Correspondence Relations for Fracture Parameters of Interface Corners in Anisotropic Viscoelastic Materials

    Chyanbin Hwu1, Tai-Liang Kuo2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 135-153, 2013, DOI:10.3970/cmc.2013.036.135

    Abstract The problems of the interface corners between two dissimilar anisotropic viscoelastic materials are studied in this paper. Through the use of the well-known correspondence principle between linear elasticity and linear viscoelasticity, fracture parameters in the Laplace domain can be obtained from the path-independent H-integral for the corresponding problems of anisotropic linear elastic materials. Further application of the correspondence relations for fracture parameters proposed in our recent study then leads us the solutions of fracture parameters in the time domain. To show the applicability and accuracy of the proposed method, several different kinds of numerical examples are presented such as a… More >

  • Open Access

    ARTICLE

    Collapse Analysis, Defect Sensitivity and Load Paths in Stiffened Shell Composite Structures

    D.W. Kelly1, M.C.W. Lee1, A.C. Orifici2,3, R.S.Thomson3, R. Degenhardt4,5

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 163-194, 2009, DOI:10.3970/cmc.2009.010.163

    Abstract An experimental program for collapse of curved stiffened composite shell structures encountered a wide range of initial and deep buckling mode shapes. This paper presents work to determine the significance of the buckling deformations for determining the final collapse loads and to understand the source of the variation. A finite element analysis is applied to predict growth of damage that causes the disbonding of stiffeners and defines a load displacement curve to final collapse. The variability in material properties and geometry is then investigated to identify a range of buckling modes and development of deep postbuckling deformation encountered in the… More >

Displaying 541-550 on page 55 of 546. Per Page