Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (343)
  • Open Access

    ARTICLE

    Influence of Honey on Structural, Morphology and Thermal Behavior of Zein-Based Polymer Systems

    Nurrul Asyiqin K. Shamsuri1, Shujahadeen B. Aziz2, Siti Nadiah Halim3, Hashlina Rusdi4, Mohd Fakhrul Zamani Kadir1,5,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1111-1123, 2025, DOI:10.32604/jpm.2025.070939 - 26 December 2025

    Abstract This study investigates the effects of honey concentration on the crystallinity, morphology, and thermal behavior of zein-based polymer systems, aiming to assess honey’s role as a natural plasticizer. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the presence of strong intermolecular interactions and hydrogen bonding between zein and honey, indicating good miscibility. X-ray diffraction (XRD) patterns revealed a significant reduction in crystallinity with increasing honey concentration up to 25 wt.%, with the ZH5 (75 wt.% zein-25 wt.% honey) sample exhibiting the smallest crystallite size (4.23 nm), suggesting enhanced amorphous character suitable for ionic mobility. Field emission… More >

  • Open Access

    ARTICLE

    Behavior of Sandwich Glued Laminated Bamboo Structures with a Core Formed by Bioplastic Fiber Using 3D Printing Technology

    Nattawat Mahasuwanchai, Thippakorn Udtaranakron, Kasan Chanto, Tawich Pulngern*

    Journal of Renewable Materials, Vol.13, No.12, pp. 2453-2478, 2025, DOI:10.32604/jrm.2025.02025-0137 - 23 December 2025

    Abstract This research investigates the behavior of sandwich glued laminated bamboo (Glubam) structures with a core formed by biodegradable plastic fibers, specifically polylactic acid (PLA), fabricated using 3D printing technology. The influence of various fiber printing orientations (0° and 45/135°) on tensile and compressive properties was investigated. The experimental results indicated that polylactic acid with calcium carbonate (PLA+) printed unidirectionally and aligned with the loading direction (0°) exhibits superior tensile and compressive strengths compared to specimens printed bidirectionally at 45/135°. Furthermore, the effect of additives on bioplastics of carbon fiber (PLA-CF) and glass fiber (PLA-GF) additives… More > Graphic Abstract

    Behavior of Sandwich Glued Laminated Bamboo Structures with a Core Formed by Bioplastic Fiber Using 3D Printing Technology

  • Open Access

    ARTICLE

    Characteristics of Food Packaging Bioplastics with Nanocrystalline Cellulose (NCC) from Oil Palm Empty Fruit Bunches (OPEFB) as Reinforcement

    Maryam1,*, Rahayu Puji2, Luthfi Muhammad Zulfikar2, Ikhsandy Ferry2, Nadiyah Khairun1, Hidayat3, Ilyas Rushdan Ahmad4, Syafri Edi5

    Journal of Renewable Materials, Vol.13, No.12, pp. 2431-2451, 2025, DOI:10.32604/jrm.2025.02024-0063 - 23 December 2025

    Abstract The development of the bioplastics industry addresses critical issues such as environmental pollution and food safety concerns. However, the industrialization of bioplastics remains underdeveloped due to challenges such as high production costs and suboptimal material characteristics. To enhance these characteristics, this study investigates bioplastics reinforced with Nanocrystalline Cellulose (NCC) derived from Oil Palm Empty Fruit Bunches (OPEFB), incorporating dispersing agents. The research employs a Central Composite Design from the Response Surface Methodology (RSM) with two factors: the type of dispersing agent (KCl and NaCl) and the NCC concentration from OPEFB (1%–5%), along with the dispersing… More >

  • Open Access

    ARTICLE

    Stress Intensity Factor, Plastic Limit Pressure and Service Life Assessment of a Transportation-Damaged Pipe with a High-Aspect-Ratio Axial Surface Crack

    Božo Damjanović*, Pejo Konjatić, Marko Katinić

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1735-1753, 2025, DOI:10.32604/cmes.2025.072256 - 26 November 2025

    Abstract Ensuring the structural integrity of piping systems is crucial in industrial operations to prevent catastrophic failures and minimize shutdown time. This study investigates a transportation-damaged pipe exposed to high-temperature conditions and cyclic loading, representing a realistic challenge in plant operation. The objective was to evaluate the service life and integrity assessment parameters of the damaged pipe, subjected to 22,000 operational cycles under two daily charge and discharge conditions. The flaw size in the damaged pipe was determined based on a failure assessment procedure, ensuring a conservative and reliable input. The damage was characterized as a… More >

  • Open Access

    ARTICLE

    Manufacturing a Biodegradable Container for Planting Plants Based on an Innovative Wood-Polymer Composite

    Ksenia Anikeeva*, Ruslan Safin

    Journal of Renewable Materials, Vol.13, No.11, pp. 2235-2252, 2025, DOI:10.32604/jrm.2025.02025-0128 - 24 November 2025

    Abstract The use of wood-polymer composites (WPC) based on a polymer matrix and wood filler is a modern, environmentally friendly direction in material science. However, untreated wood filler exhibits poor adhesion to hydrophobic polymers due to its hydrophilic lignocellulose fibers. To address this, ozone treatment is employed to enhance compatibility, reduce water absorption, and regulate biodegradation rates. This study investigates the hypothesis that ozone modification of wood filler improves adhesion to thermoplastic starch, thereby enhancing the physico-mechanical properties and controlled biodegradation of WPCs under compost conditions. A comprehensive analysis was conducted on composites containing untreated and… More >

  • Open Access

    PROCEEDINGS

    Resolving Self-Stress Artifacts in Twin Boundary Migration: A Stress Correction Scheme for the CPFE-PF Model of HCP Alloys

    Linfeng Jiang1,*, Guisen Liu1, Yao Shen1, Jian Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011397

    Abstract The plastic deformation of Mg/Ti alloys arises from the synergistic interplay of dislocation slip and deformation twinning. To model these mechanisms, we previously developed a mesoscale CPFE-PF framework that couples crystal plasticity finite element (CPFE) and phase field (PF) methods, enabling predictions of microstructure evolution and mechanical behavior under complex loading. A central challenge, however, lies in accurately capturing deformation twinning—a process critical for accommodating shear and reorienting crystal domains in low-symmetry metals. Twin propagation and thickening occur via twinning dislocations/disconnections at the atomic scale, while at larger scales they are governed by the migration… More >

  • Open Access

    PROCEEDINGS

    Internal Connection Between the Microstructures and the Mechanical Properties in Additive Manufacturing

    Yifei Wang, Zhao Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011121

    Abstract Additive manufacturing (AM) reveals high anisotropy in mechanical properties due to the thermal accumulation induced microstructures. How to reveal the internal connection between the microstructures and the mechanical properties in additive manufacturing is a challenge. There are many methods to predict the mechanical properties based on the microstructural evolutions in additive manufacturing [1–3]. Here we summarized the main methods for the prediction of the mechanical properties in additive manufacturing, including crystal plasticity finite element method (CPFEM), dislocation dynamics (DD), and molecular dynamics (MD). We systematically examine these primary approaches for mechanical property predictions in AM,… More >

  • Open Access

    PROCEEDINGS

    Nonlinear Variation of Chord Modulus of Mild Steel During Cyclic Loading-Unloading at Different Temperatures

    Liwen Guan1, Xiaoteng Wang2,*, Tang Biao2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-4, 2025, DOI:10.32604/icces.2025.012534

    Abstract By using the continuous cyclic loading-unloading tensile test method, the nonlinear variation behavior of the chord modulus of mild steel under different temperature conditions was systematically investigated, and the corresponding relationship between plastic strain and chord modulus during the cyclic loading-unloading process was clarified. Through the analysis of test data, the variation trends and quantitative corresponding models of plastic strain and chord modulus at different temperatures were established. The research results show that under constant temperature conditions, as the plastic strain increases to 10%, the chord modulus attenuation process presents a significant two-stage characteristic -… More >

  • Open Access

    PROCEEDINGS

    Quantitative Analysis of Energy Dissipation in Thin Film Si Anodes Upon Lithiation

    Zhuoyuan Zheng*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.010939

    Abstract Silicon (Si) anodes are promising candidates for lithium-ion batteries due to their high theoretical capacity and low operating voltage. However, the significant volume expansion that occurs during lithiation presents challenges, including material degradation and decreased cycle life. This study employs an electrochemical-mechanical-thermal coupled finite element model, supported by experimental validation, to investigate the impact of lithiation-induced deformation on the energy dissipation of Si anodes. We quantitatively investigate the effects of several key design parameters—C-rate, Si layer thickness, and lithiation depth—on energy losses resulting from various mechanisms, such as mechanical energy loss, polarization, and joule heating.… More >

  • Open Access

    ARTICLE

    Direct Production of Sorbitol-Plasticized Bioplastic Film from Gracilaria sp.

    Ahmad Faldo1, Labanta Marbun1, Hezekiah Lemuel Putra Zebua1, Fateha Fateha2, Rossy Choerun Nissa2, Yurin Karunia Apsha Albaina Iasya3, Riri Uswatun Annifah3, Amrul Amrul1, Yeyen Nurhamiyah2,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 743-755, 2025, DOI:10.32604/jpm.2025.069981 - 30 September 2025

    Abstract Conventional bioplastic production from seaweed often relies on extraction processes that are costly, time-consuming, and yield limited product. This study presents a direct fabrication method using Gracilaria sp., a red seaweed rich in polysaccharides, to produce bioplastic films without the need for extraction. Sorbitol was incorporated as a plasticizer at concentrations of 0%–10% (w/w) to modify film characteristics. Thermal analysis revealed improved stability at moderate sorbitol levels (5%–7%), while excessive plasticizer slightly reduced thermal resistance. Mechanical testing showed that sorbitol increased film flexibility and elongation at break, though tensile strength and stiffness declined. Tear strength followed More >

Displaying 1-10 on page 1 of 343. Per Page