Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (831)
  • Open Access

    ARTICLE

    Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models

    Yifan Huang1, Zikang Zhou1,2, Mingyu Li1, Xuedong Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3147-3165, 2024, DOI:10.32604/cmes.2024.045947

    Abstract Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management. In this study, Tuna Swarm Optimization (TSO), Whale Optimization Algorithm (WOA), and Cuckoo Search (CS) were used to optimize two hyperparameters in support vector regression (SVR). Based on these methods, three hybrid models to predict peak particle velocity (PPV) for bench blasting were developed. Eighty-eight samples were collected to establish the PPV database, eight initial blasting parameters were chosen as input parameters for the prediction model, and the PPV was the output parameter. As predictive performance evaluation indicators, the coefficient of determination (R2), root mean square… More >

  • Open Access

    ARTICLE

    Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model

    Nazik Alturki1, Abdulaziz Altamimi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Shtwai Alsubai4, Marwan Omar5, Imran Ashraf6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3513-3534, 2024, DOI:10.32604/cmes.2023.045868

    Abstract Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository. The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest neighbor (KNN) imputer is utilized to deal… More >

  • Open Access

    ARTICLE

    ASLP-DL —A Novel Approach Employing Lightweight Deep Learning Framework for Optimizing Accident Severity Level Prediction

    Saba Awan1,*, Zahid Mehmood2,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2535-2555, 2024, DOI:10.32604/cmc.2024.047337

    Abstract Highway safety researchers focus on crash injury severity, utilizing deep learning—specifically, deep neural networks (DNN), deep convolutional neural networks (D-CNN), and deep recurrent neural networks (D-RNN)—as the preferred method for modeling accident severity. Deep learning’s strength lies in handling intricate relationships within extensive datasets, making it popular for accident severity level (ASL) prediction and classification. Despite prior success, there is a need for an efficient system recognizing ASL in diverse road conditions. To address this, we present an innovative Accident Severity Level Prediction Deep Learning (ASLP-DL) framework, incorporating DNN, D-CNN, and D-RNN models fine-tuned through iterative hyperparameter selection with Stochastic… More >

  • Open Access

    ARTICLE

    Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis

    Xin Fan1,2, Shuqing Zhang1,2,*, Kaisheng Wu1,2, Wei Zheng1,2, Yu Ge1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1687-1711, 2024, DOI:10.32604/cmc.2023.046187

    Abstract Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project. However, existing CPDP methods only consider linear correlations between features (indicators) of the source and target projects. These models are not capable of evaluating non-linear correlations between features when they exist, for example, when there are differences in data distributions between the source and target projects. As a result, the performance of such CPDP models is compromised. In this paper, this paper proposes a novel CPDP method based on Synthetic Minority Oversampling Technique (SMOTE)… More >

  • Open Access

    ARTICLE

    Detecting APT-Exploited Processes through Semantic Fusion and Interaction Prediction

    Bin Luo1,2,3, Liangguo Chen1,2,3, Shuhua Ruan1,2,3,*, Yonggang Luo2,3,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1731-1754, 2024, DOI:10.32604/cmc.2023.045739

    Abstract Considering the stealthiness and persistence of Advanced Persistent Threats (APTs), system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host. Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks, and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection, which requires lots of manual efforts to locate attack entities. This paper proposes an APT-exploited process detection approach called ThreatSniffer, which constructs the benign provenance graph from attack-free audit logs, fits normal system entity… More >

  • Open Access

    ARTICLE

    Prediction on Failure Pressure of Pipeline Containing Corrosion Defects Based on ISSA-BPNN Model

    Qi Zhuang1,*, Dong Liu2, Zhuo Chen3

    Energy Engineering, Vol.121, No.3, pp. 821-834, 2024, DOI:10.32604/ee.2023.044054

    Abstract Oil and gas pipelines are affected by many factors, such as pipe wall thinning and pipeline rupture. Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management. Aiming at the shortcomings of the BP Neural Network (BPNN) model, such as low learning efficiency, sensitivity to initial weights, and easy falling into a local optimal state, an Improved Sparrow Search Algorithm (ISSA) is adopted to optimize the initial weights and thresholds of BPNN, and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established. Taking 61 sets of pipelines blasting test data… More >

  • Open Access

    ARTICLE

    Prediction and Analysis of Vehicle Interior Road Noise Based on Mechanism and Data Series Modeling

    Jian Pang1,3, Tingting Mao2, Wenyu Jia3, Xiaoli Jia3,*, Peisong Dai2, Haibo Huang1,2,*

    Sound & Vibration, Vol.58, pp. 59-80, 2024, DOI:10.32604/sv.2024.046247

    Abstract Currently, the inexorable trend toward the electrification of automobiles has heightened the prominence of road noise within overall vehicle noise. Consequently, an in-depth investigation into automobile road noise holds substantial practical importance. Previous research endeavors have predominantly centered on the formulation of mechanism models and data-driven models. While mechanism models offer robust controllability, their application encounters challenges in intricate analyses of vehicle body acoustic-vibration coupling, and the effective utilization of accumulated data remains elusive. In contrast, data-driven models exhibit efficient modeling capabilities and can assimilate conceptual vehicle knowledge, but they impose stringent requirements on both data quality and quantity. In… More >

  • Open Access

    ARTICLE

    Prediction of Sound Transmission Loss of Vehicle Floor System Based on 1D-Convolutional Neural Networks

    Cheng Peng1, Siwei Cheng2, Min Sun1, Chao Ren1, Jun Song1, Haibo Huang2,*

    Sound & Vibration, Vol.58, pp. 25-46, 2024, DOI:10.32604/sv.2024.046940

    Abstract The Noise, Vibration, and Harshness (NVH) experience during driving is significantly influenced by the sound insulation performance of the car floor acoustic package. As such, accurate and efficient predictions of its sound insulation performance are crucial for optimizing related noise reduction designs. However, the complex acoustic transmission mechanisms and difficulties in characterizing the sound absorption and insulation properties of the floor acoustic package pose significant challenges to traditional Computer-Aided Engineering (CAE) methods, leading to low modeling efficiency and prediction accuracy. To address these limitations, a hierarchical multi-objective decomposition system for predicting the sound insulation performance of the floor acoustic package… More >

  • Open Access

    ARTICLE

    Multi-Perspective Data Fusion Framework Based on Hierarchical BERT: Provide Visual Predictions of Business Processes

    Yongwang Yuan1, Xiangwei Liu2,3,*, Ke Lu1,3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1227-1252, 2024, DOI:10.32604/cmc.2023.046937

    Abstract Predictive Business Process Monitoring (PBPM) is a significant research area in Business Process Management (BPM) aimed at accurately forecasting future behavioral events. At present, deep learning methods are widely cited in PBPM research, but no method has been effective in fusing data information into the control flow for multi-perspective process prediction. Therefore, this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion. Firstly, the first layer BERT network learns the correlations between different category attribute data. Then, the attribute data is integrated into a weighted event-level feature vector and input into the second layer… More >

  • Open Access

    ARTICLE

    A Weighted Multi-Layer Analytics Based Model for Emoji Recommendation

    Amira M. Idrees1,*, Abdul Lateef Marzouq Al-Solami2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1115-1133, 2024, DOI:10.32604/cmc.2023.046457

    Abstract The developed system for eye and face detection using Convolutional Neural Networks (CNN) models, followed by eye classification and voice-based assistance, has shown promising potential in enhancing accessibility for individuals with visual impairments. The modular approach implemented in this research allows for a seamless flow of information and assistance between the different components of the system. This research significantly contributes to the field of accessibility technology by integrating computer vision, natural language processing, and voice technologies. By leveraging these advancements, the developed system offers a practical and efficient solution for assisting blind individuals. The modular design ensures flexibility, scalability, and… More >

Displaying 31-40 on page 4 of 831. Per Page