Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (76)
  • Open Access

    ARTICLE

    A Numerical Investigation on the Characteristics of the Radial Force in a Cycloid Gerotor Pump

    Lingzhi Yu1, Yunqing Gu1,*, Jiegang Mou1, Denghao Wu1, Zhenfu Chen2, Yun Ren3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 1007-1018, 2020, DOI:10.32604/fdmp.2020.09509

    Abstract In order to improve the performances of a cycloid gerotor pump, the variations of the radial force induced by different rotating speeds and outlet pressures are analyzed numerically. Using the numerical simulations as a basis, an improved oil inlet and outlet groove structure is proposed. The results show that the radial force decreases with the decrease of the outlet pressure and of the rotor speed. Compared with the original model, the large-end oil inlet line and pressure line of the new oil groove are claw-shaped. This configuration can effectively weaken the pressure changes inside the gerotor pump and reduce accordingly… More >

  • Open Access

    ARTICLE

    Influence of Tip Clearance on Unsteady Flow in Automobile Engine Pump

    Jiacheng Dai1, Jiegang Mou1, *, Tao Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 161-179, 2020, DOI:10.32604/fdmp.2020.06613

    Abstract The automobile engine pump is an important part of the automobile cooling system, and has a direct influence on the engine performance. Based on the SST k-ω turbulence model, unsteady numerical simulation for an automobile engine pump with different tip clearances was carried out by Fluent. To study the flow field characteristics and pressure fluctuation, the characteristics of secondary flow distribution in volute are also analyzed. The result shows that the pressure fluctuation characteristics of the flow field show obvious periodic variation at different levels of tip clearances. The peak value of pressure fluctuation at each monitoring point is dependent… More >

  • Open Access

    ARTICLE

    Synchronization Modulation of the Na/K Pump Molecules Can Hyperpolarize the Membrane Potential of PC12 Cells

    W. Chen1, L. Wang1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 203-204, 2006, DOI:10.32604/mcb.2006.003.203

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Analysis of the Impact of the Space Guide Vane Wrap Angle on the Performance of a Submersible Well Pump

    Xiaorui Cheng1, 2, *, Hongxing Chen1, Xiaoquan Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 271-284, 2019, DOI:10.32604/fdmp.2019.07250

    Abstract In order to study the influence of the wrap angle relating to the space guide vane of a submersible well pump (250QJ125) on the flow field and pump performance, seven possible configurations have been considered (obtained by changing the blade wrap angle while keeping unchanged all the other parameters). Such configurations have been numerically simulated in the framework of a computational model based on the Reynolds time-averaged N-S equations, the RNG k-ε turbulence approach and the SIMPLE algorithm. The impact exerted by different wrap angles of the guide vane on the performance of the pump, the internal losses of the… More >

  • Open Access

    ARTICLE

    Influence of the Area of the Reflux Hole on the Performance of a Self-Priming Pump

    Jiegang Mou1, Fengye Zhang1, *, Haoshuai Wang1, Denghao Wu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 187-205, 2019, DOI:10.32604/fdmp.2019.04657

    Abstract The self-priming process of a pump involves a complex gas-liquid two-phase flow. Studying the distribution of gas and water and the evolution of their flow in the pump is of great importance to optimize this process and shorten the pump self-priming time. In the present study, a standard k-ε turbulence model and a multiphase flow model have been used to simulate the self-priming pump process considering four different reflux hole areas. A comparison of the distribution of air and water distribution on the axial surface and inside the volume have been carried out for the different considered cases. The pattern… More >

  • Open Access

    ABSTRACT

    Converting Vacuum Residue Into Light Fuels By Self-Fluidized Pump-Free Ebullated-Bed Hydrocracking

    Tao Yang, Zhaohui Meng, Hailong Ge, Xiangchen Fang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.2, pp. 140-140, 2019, DOI:10.32604/icces.2019.04917

    Abstract Vacuum residue (VR) is the heaviest distillation cuts of crude oil. Being very intractable, VR contains high amount of sulfur, metal and asphaltene. Conventional VR conversion technologies, including delayed coker and residue fluidized catalytic cracking, cannot remove those impurities efficiently, or have to employ strict pretreatments for feed stock to meet the equipment and catalyst requirements. Hydroprocessing and hydrocracking process can convert VR into lighter oils, and remove sulfur and metal content at high efficiency; the refining nature of hydrogenation reactions could also improve the molecular structures of product cuts, increasing the commercial values. According to the fluidization state of… More >

  • Open Access

    ABSTRACT

    Contribution as for the Optimization of the Pumping Stations

    A. Alexenadrescu1, A.S. Alex,rescu1, A.C. Alexandrescu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.2, pp. 47-58, 2008, DOI:10.3970/icces.2008.008.047

    Abstract The paper follows the analyse of the connections between the constructive, working parameters, the annual energy consumptions and the energy quantity included in fitting out; it will formulate a methodology of establishment of the optimum values of the parameters of admeasurements of the pumping stations for the setting under pressure, of pipes networks, what ensure an optimum consumption of energy during of duty of the fitting out (the operational energy and the included energy in the networks, equipment and constructions), of the conditions after that it can be obtained. It will follow the generalization of the solutions of increase of… More >

  • Open Access

    ARTICLE

    Chance-Constrained Optimization of Pumping in Coastal Aquifers by Stochastic Boundary Element Method and Genetic Algorithm

    B. Amaziane1, A. Naji2, D. Ouazar3, A. H.-D. Cheng4

    CMC-Computers, Materials & Continua, Vol.2, No.2, pp. 85-96, 2005, DOI:10.3970/cmc.2005.002.085

    Abstract In this paper the optimization of groundwater pumping in coastal aquifers under the threat of saltwater intrusion is investigated. The aquifer is inhomogeneous and contains several hydraulic conductivities zones. The aquifer data such as the hydraulic conductivities are uncertain, but with their expected mean and standard deviation values given. A stochastic boundary element method based on the perturbation technique is employed as the simulation tool. The stochastic optimization is handled by the chance-constrained programming. Genetic algorithm is selected as the optimization tool. Numerical examples of deterministic and stochastic problems are provided to demonstrate the feasibility of the proposed schemes. More >

  • Open Access

    ARTICLE

    A Computational Approach to Estimating a Lubricating Layer in Concrete Pumping

    Seon Doo Jo1, Chan Kyu Park2, Jae Hong Jeong2, Seung Hoon Lee2, Seung Hee Kwon3

    CMC-Computers, Materials & Continua, Vol.27, No.3, pp. 189-210, 2012, DOI:10.3970/cmc.2011.027.189

    Abstract When concrete is being pumped, a lubricating layer forms at the interface of the inner concrete and the wall of the pipe. The lubricating layer is one of the most dominant factors in determining the pumping capability, yet no study has endeavored to quantitatively estimate the thickness and rheological properties of the layer. Recently, there has been a growing demand for large-scale construction under extreme conditions, such as high-rise buildings and super-long span bridges. This demand has heightened the need for more accurate predictions of pumpability.
    A possible mechanism that contributes to the formation of the lubricating layer is shear-induced… More >

  • Open Access

    ARTICLE

    Determination of Working Pressure for Airport Runway Rubber Mark Cleaning Vehicle Based on Numeric Simulation

    Haojun Peng1,*, Zhongwei Wu1, Jinbing Xia1, Bolin Dong1, Yuntao Peng2, Linghe Wang3, Xingxing Ma3, Wei Shen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 799-813, 2019, DOI:10.32604/cmes.2019.06950

    Abstract In this paper, numeric simulations are performed for three dimension models built according to actual surface cleaner in airport runway rubber mark cleaning vehicle using ANSYS FLUENT software on the basis of previous research finished by the authors. After analyzing the simulated flow fields under different standoff distances between nozzle outlet and runway surface and different discharge pressures at nozzle outlet, the relationships of normal stress and shear stress at striking point to outlet pressure and standoff distance are obtained. Finally, the most appropriate discharge pressure at nozzle outlet for the studied surface cleaner model is found, and this will… More >

Displaying 61-70 on page 7 of 76. Per Page