Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (76)
  • Open Access

    ARTICLE

    Effects of Particle Concentration on the Dynamics of a Single-Channel Sewage Pump under Low-Flow-Rate Conditions

    Peijian Zhou1,2, Chaoshou Yan3, Lingfeng Shu4, Hao Wang2, Jiegang Mou2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.5, pp. 871-886, 2021, DOI:10.32604/fdmp.2021.012250

    Abstract Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices. However, the non-axisymmetric structure of the impeller of this type of pumps generally induces flow asymmetry, oscillatory outflow during operations, and hydraulic imbalance. In severe cases, these effects can jeopardize the safety and stability of the overall pump. In the present study, such a problem is investigated in the framework of a Mixture multiphase flow method coupled with a RNG turbulence model used to determine the structure of the flow field and the… More >

  • Open Access

    ARTICLE

    Assessment of the Rural Water Supply Potential by Mechanical Wind Pumping Around the Floodplains of Lake Chad

    Dieudonné Kaoga Kidmo1,*, Bachirou Bogno1,2,3, Kodji Deli1, Michel Aillerie2,3

    Energy Engineering, Vol.118, No.4, pp. 931-945, 2021, DOI:10.32604/EE.2021.015574

    Abstract In the present work, an assessment of the rural water supply potential by mechanical wind pumping around the floodplains of Lake Chad has been considered. Inside the floodplains around Lake Chad, available surface water is largely contaminated and represents health hazards to populations. Access to underground and clean water has increasingly become rare. Moreover, clean water scarcity has led to conflict and territorial pressures, which are contributing factors to poverty in the considered area. Four localities, Baga, Baga-Sola, Makari and Nguigmi, respectively, in Nigeria, Chad, Cameroon and Niger have been selected inside the floodplains around Lake Chad, to evaluate the… More >

  • Open Access

    ARTICLE

    An Intelligent Diagnosis Method of the Working Conditions in Sucker-Rod Pump Wells Based on Convolutional Neural Networks and Transfer Learning

    Ruichao Zhang1,*, Liqiang Wang1, Dechun Chen2

    Energy Engineering, Vol.118, No.4, pp. 1069-1082, 2021, DOI:10.32604/EE.2021.014961

    Abstract In recent years, deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields. In the diagnosis of sucker-rod pump working conditions, due to the lack of a large-scale dynamometer card data set, the advantages of a deep convolutional neural network are not well reflected, and its application is limited. Therefore, this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning, which is used to solve the problem of too few samples in a dynamometer card data set. Based… More >

  • Open Access

    ARTICLE

    Design and Analysis of a Small Sewage Source Heat Pump Triple Supply System

    Chunxue Gao1,*, Yu Hao1, Qiuxin Liu1,2

    Energy Engineering, Vol.118, No.3, pp. 667-678, 2021, DOI:10.32604/EE.2021.014703

    Abstract Based on the characteristics of sewage from beauty salons, a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditions of the system. The results show that with the increase of sewage temperature and flow, the performance of the system also increases. In summer conditions, the system provides cooling, recovers waste heat and condensed heat from sewage, with a COP value of 8.97; in winter conditions, the system heats and produces hot water, with a COP value of 2.44; in transitional seasons, only hot… More >

  • Open Access

    ARTICLE

    Research on Operation of Electrothermal Integrated Energy System Including Heat Pump and Thermal Storage Units Based on Capacity Planning

    Taihong Liu1, Dingchen Wu2,*, Fei Xu3, Panpan Song2, Mingshan Wei2, Jian Wu1, Xiaochun Bai1

    Energy Engineering, Vol.118, No.3, pp. 535-548, 2021, DOI:10.32604/EE.2021.014326

    Abstract In view of the Three North areas existing wind power absorption and environment pollution problems, the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing power grid operation. In this paper, an electrothermal integrated energy system including heat pump and thermal storage units was proposed. The scheduling model was based on the load data and the output characteristics of power units, each power unit capacity was programmed without constraints, and the proposed scheduling model was compared with the traditional combined heat and power scheduling model. Results showed that the investment and pollutant discharge of… More >

  • Open Access

    ARTICLE

    Study on Energy Conversion Characteristics in Volute of Pump as Turbine

    Senchun Miao1,2,*, Hongbiao Zhang1, Fengxia Shi1, Xiaohui Wang1, Xijin Ma1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 201-214, 2021, DOI:10.32604/fdmp.2021.012950

    Abstract A volute is a curved funnel with cross-sectional area increasing towards the discharge port. The volute of a centrifugal pump is the casing hosting the fluid being pumped by the impeller. In Pump-as-turbine devices (PAT), vice versa the volute plays the role of energy conversion element. In the present analysis, this process is analyzed using CFD. The results show that in the contraction section of volute the conversion between dynamic pressure energy and static pressure energy essentially depends on the reduction of flow area, while in the spiral section, frictional losses also play a significant role. From the throat to… More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Performance of Heat Pump Operating with Copper and Alumina Nanofluids

    Faizan Ahmed*, Waqar Ahmed Khan, Jamal Nayfeh

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2843-2856, 2021, DOI:10.32604/cmc.2021.012041

    Abstract In the present study, an attempt is made to enhance the performance of heat pump by utilizing two types of nanofluids namely, copper and alumina nanofluids. These nanofluids were employed around the evaporator coil of the heat pump. The nanofluids were used to enhance the heat input to the system by means of providing an external jacket around the evaporator coil. Both the nanofluids were prepared in three volume fractions 1%, 2% and 5%. Water was chosen as the base fluid. The performance of the heat pump was assessed by calculating the coefficient of performance of the system when it… More >

  • Open Access

    ARTICLE

    Numerical Investigation of an Idealized Total Cavopulmonary Connection Physiology Assisted by the Axial Blood Pump With and Without Diffuser

    Zhenxin Zhao1,#, Tong Chen2,#, Xudong Liu3, Shengzhang Wang2,4,*, Haiyan Lu5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.3, pp. 1173-1184, 2020, DOI:10.32604/cmes.2020.013702

    Abstract In order to improve the surgical treatment of the congenital heart disease patient with single ventricle defect, two axial flow blood pumps, one with diffuser and the other without diffuser, were designed and virtually implanted into an idealized total cavopulmonary connection (TCPC) model to form two types of Pump-TCPC physiological structure. Computational fluid dynamics (CFD) simulations were performed to analyze the variations of the hemodynamic characteristics, such as flow field, wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), between the two Pump-TCPC models. Numerical results indicate that the Pump-TCPC with diffuser has better flow field stability,… More >

  • Open Access

    ARTICLE

    Condition Monitoring of an Industrial Oil Pump Using a Learning Based Technique

    Amin Ranjbar1, Amir Abolzafl Suratgar1,*, Saeed Shiry Ghidary2, Jafar Milimonfared3

    Sound & Vibration, Vol.54, No.4, pp. 257-267, 2020, DOI:10.32604/sv.2020.05055

    Abstract This paper proposes an efficient learning based approach to detect the faults of an industrial oil pump. The proposed method uses the wavelet transform and genetic algorithm (GA) ensemble for an optimal feature extraction procedure. Optimal features, which are dominated through this method, can remarkably represent the mechanical faults in the damaged machine. For the aim of condition monitoring, we considered five common types of malfunctions such as casing distortion, cavitation, looseness, misalignment, and unbalanced mass that occur during the machine operation. The proposed technique can determine optimal wavelet parameters and suitable statistical functions to exploit excellent features via an… More >

  • Open Access

    ARTICLE

    Influence of the Axial Position of the Guide Vane on the Fluctuations of Pressure in a Nuclear Pump

    Xiaorui Cheng1,2,*, Yimeng Jiang1, Min Li1, Shuyan Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 1047-1061, 2020, DOI:10.32604/fdmp.2020.010695

    Abstract The influence of the axial mount position of the guide vane on the pressure fluctuation in a nuclear pump (AP1000) is investigated. The characteristics of the three-dimensional flow inside the nuclear pump are analyzed by means of numerical simulation. Results indicate that when the axial relative distance between the guide vane and the pumping chamber is reduced, in conditions of “small flow,” the efficiency of the pump increases, the pressure inside the pumping chamber decreases, while the losses related to the guide vane grow. Under large flow conditions, as the efficiency of the pump decreases, the losses for the guide… More >

Displaying 51-60 on page 6 of 76. Per Page