Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,749)
  • Open Access

    ABSTRACT

    The Analysis of Transformation Temperature and Microstructural Evolution in Ni-Ti Based Shape Memory Alloys by Molecular Dynamics

    Hsin-Yu Chen, Nien-Ti Tsou*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.3, pp. 55-55, 2019, DOI:10.32604/icces.2019.05403

    Abstract Shape memory alloys has been widely applied on actuators and medical devices. The transformation temperature and microstructural evolution play the crucial factors and dominate the behavior of shape memory alloys. In order to understand the influence of the composition of the Ni-Ti on the two factors, molecular dynamics (MD) is adopted to simulate the temperature-induced phase transformation in the current study. In addition, the results are post-processed by the martensite variant identification method. The method allows to reveal the detailed microstructural evolution and the volume fraction of each variant/phase in each case of the composition of Ni-Ti. Many features that… More >

  • Open Access

    ABSTRACT

    Free vibrations of magnetoelectric bimorph beam devices by third order shear deformation theory

    A. Alaimo1, A. Milazzo1, C. Orlando1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.4, pp. 137-144, 2010, DOI:10.3970/icces.2010.015.137

    Abstract The axial and flexural natural frequencies of magneto-electro-elastic bimorph beam devices are analyzed in the framework of the third-order shear deformation theory (TSDT). Although the assumption of parabolic transverse shear strain distribution along the thickness leads to higher order stress resultants the use of the TSDT allows to avoid the need for shear correction factor. Moreover, since the electric and magnetic potentials strictly depend on the shear strains, a more accurate modeling of the magneto-electric coupling can be achieved by expanding the kinematical model up to the cubic term. The natural frequencies for different mechanical boundary conditions are computed by… More >

  • Open Access

    ABSTRACT

    Magneto-electric laminates free vibration characterization by dual reciprocity BEM

    G. Davì1, A. Milazzo1, C. Orlando1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.4, pp. 129-136, 2010, DOI:10.3970/icces.2010.015.129

    Abstract A dual reciprocity based boundary element approach for the analysis of magneto-electric laminates free vibration behavior is presented. The problem is formulated employing generalized displacements, that is displacements and electric and magnetic scalar potentials, and the corresponding generalized tractions. The generalized boundary integral representation is deduced by extending the reciprocity theorem to magneto-electro-elasticity problem and the multidomain boundary element technique is used to model multilayer structures. The magneto-electro-elastic static fundamental solutions are used jointly with the dual reciprocity method to transform the inertia domain integral into a boundary integral. Numerical results are presented focusing on the effects of the electro-magnetic… More >

  • Open Access

    ABSTRACT

    Material characterization and modeling of head for dynamic simulations

    L. Zhang1, T. Boulet1, J. Hein1, M. Arnoult1, M. Negahban1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.2, pp. 37-46, 2010, DOI:10.3970/icces.2010.015.037

    Abstract The modeling of the response of the human head to blast like loading is of importance for many applications including the study of traumatic brain injury resulting from improvised explosive devices. One key issue in simulating the response of the head is to have models that are characteristic of the response of the head and its components under these conditions. We review different characterization efforts for evaluating the response of the skin, skull, and brain within this window of response and use these results to develop models appropriate for the characterization of each component. We discuss efforts made to construct… More >

  • Open Access

    ABSTRACT

    A simple and effective preconditioner for integrated-RBF-based Cartesian-grid schemes

    N. Mai-Duy1, T. Tran-Cong1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.14, No.2, pp. 51-56, 2010, DOI:10.3970/icces.2010.014.051

    Abstract This paper presents a preconditioning scheme to improve the condition number of integrated radial-basis-function (RBF) matrices in solving large-scale 2D elliptic problems. The problem domain is discretised using a Cartesian grid, over which integrated RBF networks are employed to represent the field variable. The present preconditioner is constructed from 1D integrated RBF networks along grid lines. Test problems defined on rectangular and non-rectangular domains are employed to study the performance of the scheme. More >

  • Open Access

    ABSTRACT

    On essential work of fracture method: theoretical consideration and numerical simulation

    X.-H. Chen1, Y.-W. Mai2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.14, No.2, pp. 43-50, 2010, DOI:10.3970/icces.2010.014.043

    Abstract A general elastoplastic fracture mechanics theory is proposed for applying the Essential-Work-of-Fracture (EWF) Method to quasi-static and impact toughness characterization. Advanced finite element modeling is developed to simulate the EWF Method using the crack-tip opening angle criterion (CTOA) and the constitutive relation of the material under consideration. For Poly(ethylene-terephlate) (PET) films, the load-displacement curves are calculated for the whole crack propagation process of deeply double-edge notched tensile specimens (DENT) with different ligament lengths so as to determine the total work, the essential work and the non-essential work of fracture. The effects of specimen gauge length and ligament length on crack… More >

  • Open Access

    ABSTRACT

    The structure of BaZrO$_3$: a comparative first-principles study

    AnteBilić1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.1, pp. 13-14, 2009, DOI:10.3970/icces.2009.013.013

    Abstract Using several popular first-principles packages for materials modeling the nature of the cubic lattice of barium zirconate has been investigated. The evaluated vibrational spectra typically exhibit an extended and prominent dynamical instability. The instability manifests through imaginary frequency optical modes along the whole R-M edge of the Brillouin zone. The experimentally observed simple cubic structure is found to be dynamically unstable against an antiferro-distortive transformation. The computations predict an orthorhombic crystal structure of the material, only slightly distorted from the cubic lattice, with an eight times larger unit cell and alternate ZrO6 octahedra slightly rotated in opposite directions around the… More >

  • Open Access

    ABSTRACT

    Fracture behavior of vulcanize rubber on the variations of thickness to width ratios

    Sutthinane Nilbuaklee1, Chanyut Kolitawong1, Banpot Horbanluekit1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.1, pp. 4-10, 2009, DOI:10.3970/icces.2009.013.004

    Abstract The purpose of this research is to determine fracture effects of vulcanize elastomer at various thickness to width ratios under opening mode fracture mechanics. The J-integral values from finite element method are compared with those from experiment. In this research, fracture tests perform under Single Edge Notch Tensile (S.E.N.T) tests using the multiple-specimen method. Compare to the experimental data, the numerical results are acceptable at the deep crack length, i.e. high crack length to width ratio. The k values from the 3-D numerical calculation show that thin sheet is dominated by plane stress state, but thick sheet is dominated by… More >

  • Open Access

    ABSTRACT

    Two-step Approach for Finite Element Model Updating of Bridge Using Ambient Vibration Data

    Soojin Cho1, Jin-Hak Yi2, Chung-Bang Yun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.4, pp. 151-152, 2009, DOI:10.3970/icces.2009.012.151

    Abstract The bridges are exposed to severe operational and environmental loadings, such as traffic, wind, and earthquake during their life time. Continuous exposure to such severe loadings may lead to structural damage requiring costly repair/retrofit and even may result in an unexpected disaster, which emphasizes the importance of assessing the current condition of bridges. From the last decade, FE model updating techniques based on the bridge dynamic characteristics are emerged to evaluate the current condition of bridges quantitatively. Most of the model updating techniques basically utilize an optimization process with an objective function built up by the residuals between the natural… More >

  • Open Access

    ABSTRACT

    A path iterative method for laser-controlled crack propagation and its convergence

    Weiming Tao1, Xingwang Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.3, pp. 83-84, 2009, DOI:10.3970/icces.2009.012.083

    Abstract Laser controlled separation of brittle materials like glass is a promising non-conven\discretionary {-}{}{}tional cutting method. It is an application of the crack propagation driven by thermal stresses induced by laser irradiation. In order to induce and control a crack propagating accurately along predetermined asymmetric trajectory in a brittle plate, an iterative method for effective laser scanning path was presented, and the effect of control parameters on the convergence was investigated. The iterative formulation for laser scanning path was based on PID control theory, which was composed of deviation of the crack from predetermined trajectory and its integral and differential. To… More >

Displaying 3851-3860 on page 386 of 4749. Per Page