Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    ARTICLE

    Salicylic Acid Application Mitigates Oxidative Damage and Improves the Growth Performance of Barley under Drought Stress

    Shah Mohammad Naimul Islam1, Niloy Paul1, Md. Mezanur Rahman2, Md. Ashraful Haque1, Md. Motiar Rohman3, Mohammad Golam Mostofa4,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1513-1537, 2023, DOI:10.32604/phyton.2023.025175 - 09 March 2023

    Abstract Drought is a severe environmental constraint, causing a significant reduction in crop productivity across the world. Salicylic acid (SA) is an important plant growth regulator that helps plants cope with the adverse effects induced by various abiotic stresses. The current study investigated the potential effects of SA on drought tolerance efficacy in two barley (Hordeum vulgare) genotypes, namely BARI barley 5 and BARI barley 7. Ten-day-old barley seedlings were exposed to drought stress by maintaining 7.5% soil moisture content in the absence or presence of 0.5, 1.0 and 1.5 mM SA. Drought exposure led to severe… More >

  • Open Access

    ARTICLE

    Silicon and Nitric Oxide-Mediated Regulation of Growth Attributes, Metabolites and Antioxidant Defense System of Radish (Raphanus sativus L.) under Arsenic Stress

    Savita Bhardwaj1, Tunisha Verma1, Ali Raza2,*, Dhriti Kapoor1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 763-782, 2023, DOI:10.32604/phyton.2023.025672 - 29 November 2022

    Abstract

    Arsenic (As) contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world. Therefore, the present study was designed to investigate the individual as well as the combined effects of exogenous silicon (Si) and sodium nitroprusside (SNP), a nitric oxide (NO) donor, on plant growth, metabolites, and antioxidant defense systems of radish (Raphanus sativus L.) plants under three different concentrations of As stress, i.e., 0.3, 0.5, and 0.7 mM in a pot experiment. The results showed that As stress reduced the

    More >

  • Open Access

    ARTICLE

    A Novel Dominant Allele from 93-11, ES(4), Represses Reactive Oxygen Species Scavenging and Leads to Early-Senescence in Rice

    Zhishu Jiang#, Cong Gan#, Yulian Liu, Xiaoli Lin, Limei Peng, Yongping Song, Xiaowei Luo, Jie Xu*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 665-677, 2023, DOI:10.32604/phyton.2023.025266 - 29 November 2022

    Abstract Senescence is the last developmental process in plant, which has an important impact on crop yield and quality. In this study, a stable hereditary early-senescence line BC64 was isolated from the high-generation recombinant inbred lines of 93-11 and Wuyunjing7 (W7). Genetic analysis showed that the premature aging phenotype was controlled by a dominant gene derived from 93-11. By linkage analysis, the gene was primarily mapped in the region between marker B4 and B5 near the centromere of chromosome 4, described as ES(4). Through multiple backcrossing with W7, the near-isogenic line of ES(4) (NIL-ES(4)) was obtained. Compared More >

  • Open Access

    REVIEW

    Hypoxia-induced reactive oxygen species in organ and tissue fibrosis

    LINSHEN XIE1, QIAOLAN WANG1, JINGXUAN MA1, YE ZENG2,*

    BIOCELL, Vol.47, No.2, pp. 261-267, 2023, DOI:10.32604/biocell.2023.024738 - 18 November 2022

    Abstract Fibrosis is the end-stage change of damaged tissues in various human diseases, which can lead to permanent scarring or organ malfunction. Hypoxia leads to oxidative stress, mitochondrial dysfunction, and inflammation in dysfunctional organs and tissues. Oxidative stress resulting from the overproduction of reactive oxygen species plays a central role in the fibrosis of injured organs. This review addresses the updated knowledge of the relationship between hypoxia and tissue fibrosis mediated by the reactive oxygen species pathway. Moreover, novel anti-fibrotic strategies are discussed, which may suppress reactive oxygen species and organ fibrosis. More >

  • Open Access

    ARTICLE

    Schisandrin B exerts anticancer effects on human gastric cancer cells through ROS-mediated MAPK, STAT3, and NF-κB pathways

    TIANZHU LI1,#, YU ZHANG2,#, TONG ZHANG2,#, YANNAN LI2, HUI XUE2, JINGLONG CAO2, WENSHUANG HOU2, YINGHUA LUO3,*, CHENGHAO JIN2,4,*,

    BIOCELL, Vol.47, No.1, pp. 195-204, 2023, DOI:10.32604/biocell.2023.025593 - 26 September 2022

    Abstract Schisandrin B (Sch B) is a monomer with anti-cancer and anti-inflammatory effects, which are isolated from the plant Schisandra chinensis (Turcz) Baillon. We investigated the anti-gastric cancer (GC) effects of Sch B and its underlying molecular mechanisms. The Cell Counting Kit-8 assay was used to determine the effects of Sch B on the viability of GC and normal cell lines. Hoechst/propidium iodide staining and flow cytometry were used to assess the apoptosis induction of Sch B. Western blotting was used to evaluate the effects of Sch B on downstream apoptotic proteins. The DCFH-DA fluorescent probe was… More >

  • Open Access

    ARTICLE

    Quercetin induced HepG2 cells apoptosis through ATM/JNK/STAT3 signaling pathways

    WANTONG LIU1,#, DANYANG CHEN1,#, JINGYAO SU1,#, RUILIN ZHENG1,#, RAN KONG1, BING ZHU1, HAO DONG2,*, YINGHUA LI1,*

    BIOCELL, Vol.47, No.1, pp. 187-194, 2023, DOI:10.32604/biocell.2022.023030 - 26 September 2022

    Abstract Liver cancer is the seventh most common malignant tumor in the world and is the second highest cause of death due to cancer. Quercetin, a flavonoid with low toxicity, widely exists in various fruits and vegetables. It has the potential to be a therapeutic agent against various cancers. This study aimed to demonstrate the anti-tumor effect of quercetin on HepG2 cells. Quercetin suppressed the HepG2 cell proliferation in a dose-dependent manner in cell viability assay. Induction of cell apoptosis was confirmed by apoptotic cells population (sub-G1 peak) detected by flow cytometer. A decrease in mitochondrial More >

  • Open Access

    ARTICLE

    Nitric oxide alleviates cadmium-impeded growth by limiting ROS accumulation in pea seedlings

    EKHLAQUE A. KHAN1,2,*, HAMDINO M. I. AHMED3, MEENA MISRA1, PALLAVI SHARMA1,4, AMARENDRA N. MISRA1,5, MIRZA HASANUZZAMAN6,*

    BIOCELL, Vol.46, No.12, pp. 2583-2593, 2022, DOI:10.32604/biocell.2022.021732 - 10 August 2022

    Abstract

    Cadmium (Cd) causes oxidative stress, which leads to the oxidation of various biomolecules by the production of reactive oxygen species (ROS) to facilitate programmed cell death (PCD). The antioxidant defense system fails to detoxify ROS when it is produced in excess. Nitric oxide (NO), a gaseous free radical and a phytohormone, regulates various physiological processes of plants. Therefore, this work was undertaken to study the effects of the application of exogenous sodium nitroprusside (SNP, a NO donor) on growth parameters, oxidative stress, accumulation of secondary metabolites, and activities of antioxidant enzymes under Cd stress. Mild (50

    More >

  • Open Access

    ARTICLE

    Organic Amendments Improve Plant Morpho-Physiology and Antioxidant Metabolism in Mitigating Drought Stress in Bread Wheat (Triticum aestivum L.)

    Taufika Islam Anee1,#, Md. Nur Nabi Islam1,#, Mohamed M. Hassan2, Abdul Awal Chowdhury Masud1, Md. Mahabub Alam1, Mirza Hasanuzzaman1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.9, pp. 1959-1972, 2022, DOI:10.32604/phyton.2022.021137 - 13 May 2022

    Abstract Due to the unpredictable climate change, drought stress is being considered as one of the major threats to crop production. Wheat (Triticum aestivum L. cv. BARI Gom-26) being a dry season crop frequently faces scarcity of water and results in a lower yield. Therefore, this experiment aims to explore the role of different organic amendments (OAs) in mitigating drought stress-induced damage. The pot experiment consisted of different organic amendments viz. compost, vermicompost and poultry manure @0.09 kg m−2 soil, biochar @2.5% w/w soil and chitosan @1% w/w soil which was imposed on the plants grown under both… More >

  • Open Access

    REVIEW

    Role of Reactive Oxygen Species in the Initiation of Plant Retrograde Signaling

    Eduardo-Antonio Trillo-Hernández1, Arturo Duarte Sierra2, Martín Ernesto Tiznado-Hernández1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.5, pp. 905-913, 2022, DOI:10.32604/phyton.2022.018118 - 24 January 2022

    Abstract

    The interaction between the nucleus and the different organelles is important in the physiology of the plant. Reactive oxygen species (ROS) are a by-product of the oxidation of organic molecules to obtain energy by the need to carry out the electron transfer between the different enzymatic complexes. However, they also have a role in the generation of what is known as retrograde signaling. This signal comes from the different organelles in which the oxidation of molecules or the electron transference is taking place such as mitochondria and chloroplasts. Furthermore, ROS can also induce the release

    More >

  • Open Access

    ARTICLE

    Effects of High-Temperature Stress on Photosynthetic Characteristics and Antioxidant Enzyme System of Paeonia ostii

    Xiaoxiao Wang1, Ziwen Fang1, Daqiu Zhao1, Jun Tao1,2,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.3, pp. 599-615, 2022, DOI:10.32604/phyton.2022.017881 - 26 October 2021

    Abstract

    Paeonia ostii is an economically important oil crop, which has been widely cultivated in the middle and lower reaches of the Yangtze River in China in recent years. Although P. ostii is highly adaptable to the environment, the prolonged high summer temperature in this region severely inhibits its growth, which adversely affects seed yield and quality. In this study, P. ostii plants were subjected to 20°C/15°C (day/night) and 40°C/35°C (day/night) temperatures for 15 days. The changes in physiological and biochemical indicators of P. ostii under high-temperature stress were initially investigated. The results showed that with the deepening of leaf

    More >

Displaying 21-30 on page 3 of 50. Per Page