Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Cavitation Effects and Flow Field Analysis of a Jet Impingement-Negative Pressure Ammonia Removal Reactor

    Dong Hu1,2, Lingxing Hu3, Facheng Qiu3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1865-1882, 2025, DOI:10.32604/fhmt.2025.073409 - 31 December 2025

    Abstract With the acceleration of industrialization and urbanization, ammonia nitrogen pollution in water bodies has become increasingly severe, making the development of efficient and low-consumption wastewater treatment technologies highly significant. This study employs three-dimensional computational fluid dynamics (CFD) to investigate the cavitation mechanisms and flow field characteristics in a novel jet impingement-negative pressure ammonia removal reactor. The simulation, validated by experimental pressure data with a high degree of consistency, utilizes the Mixture model, the Realizable k-ε turbulence model, and the Schnerr-Sauer cavitation model. The results demonstrate that the flow velocity undergoes a substantial acceleration within the… More > Graphic Abstract

    Cavitation Effects and Flow Field Analysis of a Jet Impingement-Negative Pressure Ammonia Removal Reactor

  • Open Access

    ARTICLE

    Impact of Extreme Environmental Temperature on the Electric-Thermal Field Distribution of ERIP Bushing for 750 kV High Voltage Reactors

    Minjie Li1, Wanhao Shi1, Dingqian Yang2, Manman Yuan2, Jiabao Du2, Xuandong Liu1,*

    Energy Engineering, Vol.122, No.10, pp. 4297-4312, 2025, DOI:10.32604/ee.2025.066337 - 30 September 2025

    Abstract In Xinjiang, China, Oil-immersed paper bushings used in reactors are highly susceptible to discharge breakdown faults due to drastic fluctuations in environmental and oil temperatures. To mitigate this problem, oil-free and explosion-proof epoxy resin-impregnated paper (ERIP) bushings are recommended as replacements. This study develops a multi-physics(electric-thermal-fluid) coupling model for 750 kV high voltage reactors ERIP bushings. The model aims to comprehensively assess their thermal and electrical performance under extreme ambient temperatures ranging from −40°C to 90°C and oil temperatures varying from −10°C to 90°C. The results demonstrate that the bushing temperature rises consistently with increases… More >

  • Open Access

    ARTICLE

    An Investigation on the Thermal-Hydraulics Performance of a Bubble Column Reactor Fitted with Tube Bundle under Different Gas Sparger Configurations

    Yizhong Wu1,2, Changliang Han1,2,*, Jianquan Xu1,2, Long Ying1,2, Kang Wang1,2

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1103-1128, 2025, DOI:10.32604/fhmt.2025.068181 - 29 August 2025

    Abstract Bubble column reactors fitted with tube bundles (BCR TB) belong to common heat transfer equipment in the field of chemical engineering, yet the complicated thermal-hydraulics performance of BCR TB has not been deeply revealed. To fill this gap, the present study proposes a novel variable bubble size modeling approach based on the Euler-Euler two-fluid framework, which is coupled with the population balance model considering comprehensive interphase forces. On the basis of verifying numerical reliability using experimental data, the mechanism of bubble swarm flow around the tube bundle and the effects of gas sparger configurations on… More > Graphic Abstract

    An Investigation on the Thermal-Hydraulics Performance of a Bubble Column Reactor Fitted with Tube Bundle under Different Gas Sparger Configurations

  • Open Access

    ARTICLE

    Numerical Study on the Influence of Rectifier Grid on the Performances of a Cement Kiln’s SCR (Selective Catalytic Reduction) Denitrification Reactor

    Liang Ai1, Mingyue Li2, Lumin Chen1, Yihua Gao2, Yi Sun1, Yue Wu1, Fuping Qian1,*, Jinli Lu2, Naijin Huang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1171-1190, 2025, DOI:10.32604/fdmp.2025.055985 - 30 May 2025

    Abstract In this study, Computational Fluid Dynamics (CFD) together with a component transport model are exploited to investigate the influence of dimensionless parameters, involving the height of the rectifier grid and the installation height of the first catalyst layer, on the flow field and the overall denitration efficiency of a cement kiln’s SCR (Selective catalytic reduction) denitrification reactor. It is shown that accurate numerical results can be obtained by fitting the particle size distribution function to the actual cement kiln fly ash and implementing a non-uniform particle inlet boundary condition. The relative error between denitration More >

  • Open Access

    ARTICLE

    Analysis of Rotor-Seizure-Induced Pressure Rise in a Nuclear Reactor Primary Cooling Loop

    Haoyu Cui1, Congxin Yang1,2,*, Yanlei Guo1, Tianzhi Lv1, Sen Zhao1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2907-2926, 2024, DOI:10.32604/fdmp.2024.055301 - 23 December 2024

    Abstract Most of existing methods for the safety assessment of the primary cooling loop of nuclear reactors in conditions of reactor coolant pump (RCP) failure (rotor seizure accident) essentially rely on the combination of one-dimensional theory and experience. This study introduces a novel three-dimensional model of the ‘Hualong-1’ (HPR1000) primary loop and uses the method of matching the resistance characteristics of the tube to ensure that the main pump operates at the rated operating condition. In particular, the three-dimensional unsteady numerical calculation of the RCP behavior in the rotor-seizure accident condition is carried out in the More >

  • Open Access

    PROCEEDINGS

    Study on the Flow Dead Zone in the Shell of an Industrial Tubular Fixed Bed Reactor

    Binbin Hao1, Zhenming Liu1,*, Yajun Deng1,*, Dongliang Sun1, Wei Zhang1, Bo Yu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012194

    Abstract The tubular fixed bed reactor is widely used in industrial production because of its strong applicability, high stability and easy maintenance. The flow dead zone in the shell of the reactor will significantly affect the overall performance of the reactor. Reducing the flow dead zone in the shell is the main way to optimize the performance of tubular fixed bed reactor. At present, most of the research on the flow dead zone of the reactor is based on the simplified reactor model, the number and size of tubes are far from the industrial requirements. In… More >

  • Open Access

    PROCEEDINGS

    Design and Fabrication of Porous Lithium-Containing Ceramic Tritium Breeders for Fusion Reactors

    Jili Cai1, Junyi Zhou1, Hangyu Chen1, Liang Huang1, Wenming Jiang1, Jie Liu1, Zhongwei Li1, Chao Cai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011946

    Abstract Effectively obtaining tritium is one of the essential issues to realize commercial and controlled nuclear fusion [1]. Conventional lithium-containing ceramic tritium breeders with pebble bed configurations in fusion reactors have shown insurmountable structural drawbacks weakening tritium extraction, including inherently low packing fractions, extensive stress concentrations, and low thermal conductivity. Therefore, extensive efforts have been devoted to enhancing tritium extraction by improving the design of tritium breeders and addressing structural drawbacks [2-4]. In this study, porous block configurations were proposed to replace conventional pebble bed configurations for the ceramic tritium breeder. Utilizing fluid-solid coupled heat transfer… More >

  • Open Access

    PROCEEDINGS

    Optimization of Thermal Management Structure of Multilayer Concentric Circle Metal Hydride-Phase Change Material Reactor

    Yihan Liao1, Jingfa Li2,*, Yi Wang1,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011032

    Abstract Metal Hydride (MH) is a promising hydrogen storage technique owing to its safety, availability, and high volumetric storage density. MH hydrogen storage reactor is the core component of MH hydrogen storage technology. However, the thermal effect of MH hydrogen storage reactor in the process of hydrogenation/dehydrogenation is significant, which requires an efficient heat management system for the reactor. Phase change materials (PCM) can be applied to MH hydrogen storage reactor, and have the advantages of simple structure. In this paper, representative PCM thermal management methods were summarized, and the distribution structure of the existing multi-layer… More >

  • Open Access

    ARTICLE

    A Numerical Investigation of the Effect of Boundary Conditions on Acoustic Pressure Distribution in a Sonochemical Reactor Chamber

    Ivan Sboev1,*, Tatyana Lyubimova2,3, Konstantin Rybkin3, Michael Kuchinskiy2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1425-1439, 2024, DOI:10.32604/fdmp.2024.051341 - 27 June 2024

    Abstract The intensification of physicochemical processes in the sonochemical reactor chamber is widely used in problems of synthesis, extraction and separation. One of the most important mechanisms at play in such processes is the acoustic cavitation due to the non-uniform distribution of acoustic pressure in the chamber. Cavitation has a strong impact on the surface degradation mechanisms. In this work, a numerical calculation of the acoustic pressure distribution inside the reactor chamber was performed using COMSOL Multiphysics. The numerical results have revealed the dependence of the structure of the acoustic pressure field on the boundary conditions More > Graphic Abstract

    A Numerical Investigation of the Effect of Boundary Conditions on Acoustic Pressure Distribution in a Sonochemical Reactor Chamber

  • Open Access

    ARTICLE

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

    Mengdong An1, Weiyuan Zhong1, Wei Xu2, Xiuli Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1331-1349, 2024, DOI:10.32604/fdmp.2023.046604 - 27 June 2024

    Abstract The reactor coolant pump (RCP) rotor seizure accident is defined as a short-time seizure of the RCP rotor. This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip. The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences. This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation, which need to be analyzed and understood. This study constructed transient flow and rotational speed mathematical More > Graphic Abstract

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

Displaying 1-10 on page 1 of 42. Per Page