Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (148)
  • Open Access

    ARTICLE

    Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks

    Zheyuan Jia, Fenglin Jin*, Jun Xie, Yuan He

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069128 - 10 November 2025

    Abstract This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks (SAGIN) through a novel Recursive Multi-Agent Proximal Policy Optimization (RMAPPO) algorithm. The exponential growth of mobile devices and data traffic has substantially increased network congestion, particularly in urban areas and regions with limited terrestrial infrastructure. Our approach jointly optimizes unmanned aerial vehicle (UAV) trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput, minimize energy consumption, and maintain equitable resource distribution. The proposed RMAPPO framework incorporates recurrent neural networks (RNNs) to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent More >

  • Open Access

    ARTICLE

    Efficient Malicious QR Code Detection System Using an Advanced Deep Learning Approach

    Abdulaziz A. Alsulami1, Qasem Abu Al-Haija2,*, Badraddin Alturki3, Ayman Yafoz1, Ali Alqahtani4, Raed Alsini1, Sami Saeed Binyamin5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1117-1140, 2025, DOI:10.32604/cmes.2025.070745 - 30 October 2025

    Abstract QR codes are widely used in applications such as information sharing, advertising, and digital payments. However, their growing adoption has made them attractive targets for malicious activities, including malware distribution and phishing attacks. Traditional detection approaches rely on URL analysis or image-based feature extraction, which may introduce significant computational overhead and limit real-time applicability, and their performance often depends on the quality of extracted features. Previous studies in malicious detection do not fully focus on QR code security when combining convolutional neural networks (CNNs) with recurrent neural networks (RNNs). This research proposes a deep learning… More >

  • Open Access

    ARTICLE

    Transfer Learning-Based Approach with an Ensemble Classifier for Detecting Keylogging Attack on the Internet of Things

    Yahya Alhaj Maz1, Mohammed Anbar1, Selvakumar Manickam1,*, Mosleh M. Abualhaj2, Sultan Ahmed Almalki3, Basim Ahmad Alabsi4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5287-5307, 2025, DOI:10.32604/cmc.2025.068257 - 23 October 2025

    Abstract The Internet of Things (IoT) is an innovation that combines imagined space with the actual world on a single platform. Because of the recent rapid rise of IoT devices, there has been a lack of standards, leading to a massive increase in unprotected devices connecting to networks. Consequently, cyberattacks on IoT are becoming more common, particularly keylogging attacks, which are often caused by security vulnerabilities on IoT networks. This research focuses on the role of transfer learning and ensemble classifiers in enhancing the detection of keylogging attacks within small, imbalanced IoT datasets. The authors propose… More >

  • Open Access

    ARTICLE

    A Real-Time Deep Learning Approach for Electrocardiogram-Based Cardiovascular Disease Prediction with Adaptive Drift Detection and Generative Feature Replay

    Soumia Zertal1,2,*, Asma Saighi1,2, Sofia Kouah1,2, Souham Meshoul3,*, Zakaria Laboudi2,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3737-3782, 2025, DOI:10.32604/cmes.2025.068558 - 30 September 2025

    Abstract Cardiovascular diseases (CVDs) continue to present a leading cause of mortality worldwide, emphasizing the importance of early and accurate prediction. Electrocardiogram (ECG) signals, central to cardiac monitoring, have increasingly been integrated with Deep Learning (DL) for real-time prediction of CVDs. However, DL models are prone to performance degradation due to concept drift and to catastrophic forgetting. To address this issue, we propose a real-time CVDs prediction approach, referred to as ADWIN-GFR that combines Convolutional Neural Network (CNN) layers, for spatial feature extraction, with Gated Recurrent Units (GRU), for temporal modeling, alongside adaptive drift detection and… More > Graphic Abstract

    A Real-Time Deep Learning Approach for Electrocardiogram-Based Cardiovascular Disease Prediction with Adaptive Drift Detection and Generative Feature Replay

  • Open Access

    ARTICLE

    CGB-Net: A Novel Convolutional Gated Bidirectional Network for Enhanced Sleep Posture Classification

    Hoang-Dieu Vu1,2, Duc-Nghia Tran3, Quang-Tu Pham1, Ngoc-Linh Nguyen4,*, Duc-Tan Tran1,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2819-2835, 2025, DOI:10.32604/cmc.2025.068355 - 23 September 2025

    Abstract This study presents CGB-Net, a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer, with direct applicability to gastroesophageal reflux disease (GERD) monitoring. Unlike conventional approaches limited to four basic postures, CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions, providing enhanced resolution for personalized health assessment. The architecture introduces a unique integration of three complementary components: 1D Convolutional Neural Networks (1D-CNN) for efficient local spatial feature extraction, Gated Recurrent Units (GRU) to capture short-term temporal dependencies with reduced computational complexity, and Bidirectional Long Short-Term Memory… More >

  • Open Access

    ARTICLE

    Improving Fashion Sentiment Detection on X through Hybrid Transformers and RNNs

    Bandar Alotaibi1,*, Aljawhara Almutarie2, Shuaa Alotaibi3, Munif Alotaibi4

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4451-4467, 2025, DOI:10.32604/cmc.2025.066050 - 30 July 2025

    Abstract X (formerly known as Twitter) is one of the most prominent social media platforms, enabling users to share short messages (tweets) with the public or their followers. It serves various purposes, from real-time news dissemination and political discourse to trend spotting and consumer engagement. X has emerged as a key space for understanding shifting brand perceptions, consumer preferences, and product-related sentiment in the fashion industry. However, the platform’s informal, dynamic, and context-dependent language poses substantial challenges for sentiment analysis, mainly when attempting to detect sarcasm, slang, and nuanced emotional tones. This study introduces a hybrid… More >

  • Open Access

    ARTICLE

    A Novel Attention-Augmented LSTM (AA-LSTM) Model for Optimized Energy Management in EV Charging Stations

    Harendra Pratap Singh1,2, Ishfaq Hussain Rather3, Sushil Kumar1, Mohammad Aljaidi4, Omprakash Kaiwartya5,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5577-5595, 2025, DOI:10.32604/cmc.2025.065741 - 30 July 2025

    Abstract Electric Vehicles (EVs) have emerged as a cleaner, low-carbon, and environmentally friendly alternative to traditional internal combustion engine (ICE) vehicles. With the increasing adoption of EVs, they are expected to eventually replace ICE vehicles entirely. However, the rapid growth of EVs has significantly increased energy demand, posing challenges for power grids and infrastructure. This surge in energy demand has driven advancements in developing efficient charging infrastructure and energy management solutions to mitigate the risks of power outages and disruptions caused by the rising number of EVs on the road. To address these challenges, various deep… More >

  • Open Access

    ARTICLE

    Renovated Random Attribute-Based Fennec Fox Optimized Deep Learning Framework in Low-Rate DoS Attack Detection in IoT

    Prasanalakshmi Balaji1,2, Sangita Babu3, Maode Ma4, Zhaoxi Fang2, Syarifah Bahiyah Rahayu5,6,*, Mariyam Aysha Bivi1, Mahaveerakannan Renganathan7

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5831-5858, 2025, DOI:10.32604/cmc.2025.065260 - 30 July 2025

    Abstract The rapid progression of the Internet of Things (IoT) technology enables its application across various sectors. However, IoT devices typically acquire inadequate computing power and user interfaces, making them susceptible to security threats. One significant risk to cloud networks is Distributed Denial-of-Service (DoS) attacks, where attackers aim to overcome a target system with excessive data and requests. Among these, low-rate DoS (LR-DoS) attacks present a particular challenge to detection. By sending bursts of attacks at irregular intervals, LR-DoS significantly degrades the targeted system’s Quality of Service (QoS). The low-rate nature of these attacks confuses their… More >

  • Open Access

    REVIEW

    Drug discovery in advanced and recurrent endometrial cancer: Recent advances

    ALEX A. FRANCOEUR*, NATALIE AYOUB, DANIELLE GREENBERG, KRISHNANSU S. TEWARI

    Oncology Research, Vol.33, No.7, pp. 1511-1530, 2025, DOI:10.32604/or.2025.061120 - 26 June 2025

    Abstract Endometrial cancer is the most common gynecologic cancer diagnosed in the United States and mortality is on the rise. Advanced and recurrent endometrial cancer represents a treatment challenge as historically there have been limited therapeutic options for patients. In the last several years, multiple practice-changing clinical trials have led to significant improvements in the treatment landscape. This review will cover updates in the treatment and management of advanced and recurrent endometrial cancer with a focus on novel therapeutics, such as anti-PD-L1 and PD-1 inhibitors, poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and hormonal therapy. More >

  • Open Access

    ARTICLE

    Diabetes Prediction Using ADASYN-Based Data Augmentation and CNN-BiGRU Deep Learning Model

    Tehreem Fatima1, Kewen Xia1,*, Wenbiao Yang2, Qurat Ul Ain1, Poornima Lankani Perera1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 811-826, 2025, DOI:10.32604/cmc.2025.063686 - 09 June 2025

    Abstract The rising prevalence of diabetes in modern society underscores the urgent need for precise and efficient diagnostic tools to support early intervention and treatment. However, the inherent limitations of existing datasets, including significant class imbalances and inadequate sample diversity, pose challenges to the accurate prediction and classification of diabetes. Addressing these issues, this study proposes an innovative diabetes prediction framework that integrates a hybrid Convolutional Neural Network-Bidirectional Gated Recurrent Unit (CNN-BiGRU) model for classification with Adaptive Synthetic Sampling (ADASYN) for data augmentation. ADASYN was employed to generate synthetic yet representative data samples, effectively mitigating class… More >

Displaying 1-10 on page 1 of 148. Per Page