Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (127)
  • Open Access

    ARTICLE

    Deterministic Convergence Analysis for GRU Networks via Smoothing Regularization

    Qian Zhu1, Qian Kang1, Tao Xu2, Dengxiu Yu3,*, Zhen Wang1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1855-1879, 2025, DOI:10.32604/cmc.2025.061913 - 16 April 2025

    Abstract In this study, we present a deterministic convergence analysis of Gated Recurrent Unit (GRU) networks enhanced by a smoothing regularization technique. While GRU architectures effectively mitigate gradient vanishing/exploding issues in sequential modeling, they remain prone to overfitting, particularly under noisy or limited training data. Traditional regularization, despite enforcing sparsity and accelerating optimization, introduces non-differentiable points in the error function, leading to oscillations during training. To address this, we propose a novel smoothing regularization framework that replaces the non-differentiable absolute function with a quadratic approximation, ensuring gradient continuity and stabilizing the optimization landscape. Theoretically, we rigorously… More >

  • Open Access

    ARTICLE

    From Detection to Explanation: Integrating Temporal and Spatial Features for Rumor Detection and Explaining Results Using LLMs

    Nanjiang Zhong*, Xinchen Jiang, Yuan Yao

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4741-4757, 2025, DOI:10.32604/cmc.2025.059536 - 06 March 2025

    Abstract The proliferation of rumors on social media has caused serious harm to society. Although previous research has attempted to use deep learning methods for rumor detection, they did not simultaneously consider the two key features of temporal and spatial domains. More importantly, these methods struggle to automatically generate convincing explanations for the detection results, which is crucial for preventing the further spread of rumors. To address these limitations, this paper proposes a novel method that integrates both temporal and spatial features while leveraging Large Language Models (LLMs) to automatically generate explanations for the detection results.… More >

  • Open Access

    ARTICLE

    MACLSTM: A Weather Attributes Enabled Recurrent Approach to Appliance-Level Energy Consumption Forecasting

    Ruoxin Li1,*, Shaoxiong Wu1, Fengping Deng1, Zhongli Tian1, Hua Cai1, Xiang Li1, Xu Xu1, Qi Liu2,3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2969-2984, 2025, DOI:10.32604/cmc.2025.060230 - 17 February 2025

    Abstract Studies to enhance the management of electrical energy have gained considerable momentum in recent years. The question of how much energy will be needed in households is a pressing issue as it allows the management plan of the available resources at the power grids and consumer levels. A non-intrusive inference process can be adopted to predict the amount of energy required by appliances. In this study, an inference process of appliance consumption based on temporal and environmental factors used as a soft sensor is proposed. First, a study of the correlation between the electrical and… More >

  • Open Access

    ARTICLE

    A Hybrid Transfer Learning Framework for Enhanced Oil Production Time Series Forecasting

    Dalal AL-Alimi1, Mohammed A. A. Al-qaness2,3,*, Robertas Damaševičius4,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3539-3561, 2025, DOI:10.32604/cmc.2025.059869 - 17 February 2025

    Abstract Accurate forecasting of oil production is essential for optimizing resource management and minimizing operational risks in the energy sector. Traditional time-series forecasting techniques, despite their widespread application, often encounter difficulties in handling the complexities of oil production data, which is characterized by non-linear patterns, skewed distributions, and the presence of outliers. To overcome these limitations, deep learning methods have emerged as more robust alternatives. However, while deep neural networks offer improved accuracy, they demand substantial amounts of data for effective training. Conversely, shallow networks with fewer layers lack the capacity to model complex data distributions… More >

  • Open Access

    ARTICLE

    A Fusion Model for Personalized Adaptive Multi-Product Recommendation System Using Transfer Learning and Bi-GRU

    Buchi Reddy Ramakantha Reddy, Ramasamy Lokesh Kumar*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4081-4107, 2024, DOI:10.32604/cmc.2024.057071 - 19 December 2024

    Abstract Traditional e-commerce recommendation systems often struggle with dynamic user preferences and a vast array of products, leading to suboptimal user experiences. To address this, our study presents a Personalized Adaptive Multi-Product Recommendation System (PAMR) leveraging transfer learning and Bi-GRU (Bidirectional Gated Recurrent Units). Using a large dataset of user reviews from Amazon and Flipkart, we employ transfer learning with pre-trained models (AlexNet, GoogleNet, ResNet-50) to extract high-level attributes from product data, ensuring effective feature representation even with limited data. Bi-GRU captures both spatial and sequential dependencies in user-item interactions. The innovation of this study lies… More >

  • Open Access

    ARTICLE

    Optimizing the Clinical Decision Support System (CDSS) by Using Recurrent Neural Network (RNN) Language Models for Real-Time Medical Query Processing

    Israa Ibraheem Al Barazanchi1,2,*, Wahidah Hashim1, Reema Thabit1, Mashary Nawwaf Alrasheedy3,4, Abeer Aljohan5, Jongwoon Park6, Byoungchol Chang6

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4787-4832, 2024, DOI:10.32604/cmc.2024.055079 - 19 December 2024

    Abstract This research aims to enhance Clinical Decision Support Systems (CDSS) within Wireless Body Area Networks (WBANs) by leveraging advanced machine learning techniques. Specifically, we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) layers and echo state cells. These models are tailored to improve diagnostic precision, particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases. Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex, sequential medical data, struggling with long-term dependencies and data… More >

  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries

    Tao Yan1, Javed Rashid2,3, Muhammad Shoaib Saleem3,4, Sajjad Ahmad4, Muhammad Faheem5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2685-2708, 2024, DOI:10.32604/cmc.2024.058186 - 18 November 2024

    Abstract Electricity is essential for keeping power networks balanced between supply and demand, especially since it costs a lot to store. The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce. The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand. There is a new deep learning model called the Green-electrical Production Ensemble (GP-Ensemble). It combines three types of neural networks: convolutional neural networks (CNNs), gated recurrent units (GRUs), and… More >

  • Open Access

    ARTICLE

    A Recurrent Neural Network for Multimodal Anomaly Detection by Using Spatio-Temporal Audio-Visual Data

    Sameema Tariq1, Ata-Ur- Rehman2,3, Maria Abubakar2, Waseem Iqbal4, Hatoon S. Alsagri5, Yousef A. Alduraywish5, Haya Abdullah A. Alhakbani5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2493-2515, 2024, DOI:10.32604/cmc.2024.055787 - 18 November 2024

    Abstract In video surveillance, anomaly detection requires training machine learning models on spatio-temporal video sequences. However, sometimes the video-only data is not sufficient to accurately detect all the abnormal activities. Therefore, we propose a novel audio-visual spatiotemporal autoencoder specifically designed to detect anomalies for video surveillance by utilizing audio data along with video data. This paper presents a competitive approach to a multi-modal recurrent neural network for anomaly detection that combines separate spatial and temporal autoencoders to leverage both spatial and temporal features in audio-visual data. The proposed model is trained to produce low reconstruction error… More >

  • Open Access

    ARTICLE

    An Efficient Long Short-Term Memory and Gated Recurrent Unit Based Smart Vessel Trajectory Prediction Using Automatic Identification System Data

    Umar Zaman1, Junaid Khan2, Eunkyu Lee1,3, Sajjad Hussain4, Awatef Salim Balobaid5, Rua Yahya Aburasain5, Kyungsup Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1789-1808, 2024, DOI:10.32604/cmc.2024.056222 - 15 October 2024

    Abstract Maritime transportation, a cornerstone of global trade, faces increasing safety challenges due to growing sea traffic volumes. This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System (AIS) data and advanced deep learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional LSTM (DBLSTM), Simple Recurrent Neural Network (SimpleRNN), and Kalman Filtering. The research implemented rigorous AIS data preprocessing, encompassing record deduplication, noise elimination, stationary simplification, and removal of insignificant trajectories. Models were trained using key navigational parameters: latitude, longitude, speed, and heading. Spatiotemporal aware processing through trajectory segmentation… More >

Displaying 1-10 on page 1 of 127. Per Page