Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (118)
  • Open Access

    ARTICLE

    Using Recurrent Neural Network Structure and Multi-Head Attention with Convolution for Fraudulent Phone Text Recognition

    Junjie Zhou, Hongkui Xu*, Zifeng Zhang, Jiangkun Lu, Wentao Guo, Zhenye Li

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2277-2297, 2023, DOI:10.32604/csse.2023.036419 - 09 February 2023

    Abstract Fraud cases have been a risk in society and people’s property security has been greatly threatened. In recent studies, many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis. These algorithms are also suitable for fraudulent phone text recognition. Compared to these tasks, the semantics of fraudulent words are more complex and more difficult to distinguish. Recurrent Neural Networks (RNN), the variants of RNN, Convolutional Neural Networks (CNN), and hybrid neural networks to extract text features are used by most text classification research. However, a single network or… More >

  • Open Access

    ARTICLE

    Continuous Mobile User Authentication Using a Hybrid CNN-Bi-LSTM Approach

    Sarah Alzahrani1, Joud Alderaan1, Dalya Alatawi1, Bandar Alotaibi1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 651-667, 2023, DOI:10.32604/cmc.2023.035173 - 06 February 2023

    Abstract Internet of Things (IoT) devices incorporate a large amount of data in several fields, including those of medicine, business, and engineering. User authentication is paramount in the IoT era to assure connected devices’ security. However, traditional authentication methods and conventional biometrics-based authentication approaches such as face recognition, fingerprints, and password are vulnerable to various attacks, including smudge attacks, heat attacks, and shoulder surfing attacks. Behavioral biometrics is introduced by the powerful sensing capabilities of IoT devices such as smart wearables and smartphones, enabling continuous authentication. Artificial Intelligence (AI)-based approaches introduce a bright future in refining… More >

  • Open Access

    ARTICLE

    Neural Network-Based State of Charge Estimation Method for Lithium-ion Batteries Based on Temperature

    Donghun Wang, Jonghyun Lee, Minchan Kim, Insoo Lee*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2025-2040, 2023, DOI:10.32604/iasc.2023.034749 - 05 January 2023

    Abstract Lithium-ion batteries are commonly used in electric vehicles, mobile phones, and laptops. These batteries demonstrate several advantages, such as environmental friendliness, high energy density, and long life. However, battery overcharging and overdischarging may occur if the batteries are not monitored continuously. Overcharging causes fire and explosion casualties, and overdischarging causes a reduction in the battery capacity and life. In addition, the internal resistance of such batteries varies depending on their external temperature, electrolyte, cathode material, and other factors; the capacity of the batteries decreases with temperature. In this study, we develop a method for estimating… More >

  • Open Access

    ARTICLE

    DERNNet: Dual Encoding Recurrent Neural Network Based Secure Optimal Routing in WSN

    A. Venkatesh1, S. Asha2,*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1375-1392, 2023, DOI:10.32604/csse.2023.030944 - 03 November 2022

    Abstract A Wireless Sensor Network (WSN) is constructed with numerous sensors over geographical regions. The basic challenge experienced while designing WSN is in increasing the network lifetime and use of low energy. As sensor nodes are resource constrained in nature, novel techniques are essential to improve lifetime of nodes in WSN. Nodes energy is considered as an important resource for sensor node which are battery powered based. In WSN, energy is consumed mainly while data is being transferred among nodes in the network. Several research works are carried out focusing on preserving energy of nodes in… More >

  • Open Access

    ARTICLE

    An End-to-End Transformer-Based Automatic Speech Recognition for Qur’an Reciters

    Mohammed Hadwan1,2,*, Hamzah A. Alsayadi3,4, Salah AL-Hagree5

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3471-3487, 2023, DOI:10.32604/cmc.2023.033457 - 31 October 2022

    Abstract The attention-based encoder-decoder technique, known as the trans-former, is used to enhance the performance of end-to-end automatic speech recognition (ASR). This research focuses on applying ASR end-to-end transformer-based models for the Arabic language, as the researchers’ community pays little attention to it. The Muslims Holy Qur’an book is written using Arabic diacritized text. In this paper, an end-to-end transformer model to building a robust Qur’an vs. recognition is proposed. The acoustic model was built using the transformer-based model as deep learning by the PyTorch framework. A multi-head attention mechanism is utilized to represent the encoder and… More >

  • Open Access

    ARTICLE

    Stacking Ensemble Learning-Based Convolutional Gated Recurrent Neural Network for Diabetes Miletus

    G. Geetha1,2,*, K. Mohana Prasad1

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 703-718, 2023, DOI:10.32604/iasc.2023.032530 - 29 September 2022

    Abstract Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure. It causes hyperglycemia and chronic multiorgan dysfunction, including blindness, renal failure, and cardiovascular disease, if left untreated. One of the essential checks that are needed to be performed frequently in Type 1 Diabetes Mellitus is a blood test, this procedure involves extracting blood quite frequently, which leads to subject discomfort increasing the possibility of infection when the procedure is often recurring. Existing methods used for diabetes classification have less classification accuracy and suffer from vanishing… More >

  • Open Access

    ARTICLE

    Night Vision Object Tracking System Using Correlation Aware LSTM-Based Modified Yolo Algorithm

    R. Anandha Murugan1,*, B. Sathyabama2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 353-368, 2023, DOI:10.32604/iasc.2023.032355 - 29 September 2022

    Abstract Improved picture quality is critical to the effectiveness of object recognition and tracking. The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions, such as mist, fog, dust etc. The pictures then shift in intensity, colour, polarity and consistency. A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient environments. In recent years, target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of… More >

  • Open Access

    ARTICLE

    Identifying Cancer Disease Using Softmax-Feed Forward Recurrent Neural Classification

    P. Saranya*, P. Asha

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1137-1149, 2023, DOI:10.32604/iasc.2023.031470 - 29 September 2022

    Abstract In today’s growing modern world environment, as human food activities are changing, it is affecting human health, thus leading to diseases like cancer. Cancer is a complex disease with many subtypes that affect human health without premature treatment and cause death. So the analysis of early diagnosis and prognosis of cancer studies can improve clinical management by analyzing various features of observation, which has become necessary to classify the type in cancer research. The research needs importance to organize the risk of the cancer patients based on data analysis to predict the result of premature… More >

  • Open Access

    ARTICLE

    Optimal Energy Forecasting Using Hybrid Recurrent Neural Networks

    Elumalaivasan Poongavanam1,*, Padmanathan Kasinathan2, Kulothungan Kanagasabai3

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 249-265, 2023, DOI:10.32604/iasc.2023.030101 - 29 September 2022

    Abstract The nation deserves to learn what India’s future energy demand will be in order to plan and implement an energy policy. This energy demand will have to be fulfilled by an adequate mix of existing energy sources, considering the constraints imposed by future economic and social changes in the direction of a more sustainable world. Forecasting energy demand, on the other hand, is a tricky task because it is influenced by numerous micro-variables. As a result, an macro model with only a few factors that may be predicted globally, rather than a detailed analysis for… More >

  • Open Access

    ARTICLE

    Malicious URL Classification Using Artificial Fish Swarm Optimization and Deep Learning

    Anwer Mustafa Hilal1,2,*, Aisha Hassan Abdalla Hashim1, Heba G. Mohamed3, Mohamed K. Nour4, Mashael M. Asiri5, Ali M. Al-Sharafi6, Mahmoud Othman7, Abdelwahed Motwakel2

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 607-621, 2023, DOI:10.32604/cmc.2023.031371 - 22 September 2022

    Abstract Cybersecurity-related solutions have become familiar since it ensures security and privacy against cyberattacks in this digital era. Malicious Uniform Resource Locators (URLs) can be embedded in email or Twitter and used to lure vulnerable internet users to implement malicious data in their systems. This may result in compromised security of the systems, scams, and other such cyberattacks. These attacks hijack huge quantities of the available data, incurring heavy financial loss. At the same time, Machine Learning (ML) and Deep Learning (DL) models paved the way for designing models that can detect malicious URLs accurately and… More >

Displaying 41-50 on page 5 of 118. Per Page